|
@@ -1038,7 +1038,8 @@ the ratio of the drag force and the gravity force:</p>
|
|
|
\left|\frac{d\bar\theta}{d\bar t}\right|\frac{d\bar\theta}{d\bar t}
|
|
\left|\frac{d\bar\theta}{d\bar t}\right|\frac{d\bar\theta}{d\bar t}
|
|
|
\sim \frac{C_D\varrho \pi R^2 L}{2m}\theta_0^2 = \alpha \theta_0^2{\thinspace .}\]</div>
|
|
\sim \frac{C_D\varrho \pi R^2 L}{2m}\theta_0^2 = \alpha \theta_0^2{\thinspace .}\]</div>
|
|
|
<p>(We have that <span class="math">\(\theta(t)/d\theta_0\)</span> is in <span class="math">\([-1,1]\)</span>, so we expect
|
|
<p>(We have that <span class="math">\(\theta(t)/d\theta_0\)</span> is in <span class="math">\([-1,1]\)</span>, so we expect
|
|
|
-since <span class="math">\(\theta_0^{-1}d\bar\theta/d\bar t\)</span> to be around unity.)</p>
|
|
|
|
|
|
|
+since <span class="math">\(\theta_0^{-1}d\bar\theta/d\bar t\)</span> to be around unity. Here,
|
|
|
|
|
+<span class="math">\(\theta_0=\theta(0)\)</span>.)</p>
|
|
|
<p>The next step is to write a numerical solver for
|
|
<p>The next step is to write a numerical solver for
|
|
|
<a href="#equation-sketcher:ex:pendulum:anim:eq:ith:s">(3)</a>-<a href="#equation-sketcher:ex:pendulum:anim:eq:ir:s">(4)</a>. To
|
|
<a href="#equation-sketcher:ex:pendulum:anim:eq:ith:s">(3)</a>-<a href="#equation-sketcher:ex:pendulum:anim:eq:ir:s">(4)</a>. To
|
|
|
this end, we use the <a class="reference external" href="https://github.com/hplgit/odespy">Odespy</a>
|
|
this end, we use the <a class="reference external" href="https://github.com/hplgit/odespy">Odespy</a>
|