| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009 |
- <!doctype html>
- <html lang="en" class="no-js">
- <head>
-
- <meta charset="utf-8">
- <meta name="viewport" content="width=device-width,initial-scale=1">
-
-
-
- <link rel="shortcut icon" href="../../assets/images/favicon.png">
- <meta name="generator" content="mkdocs-1.1.2, mkdocs-material-5.5.3">
-
-
-
- <title>DryFriction - Jypyter Sketcher</title>
-
-
-
- <link rel="stylesheet" href="../../assets/stylesheets/main.947af8d5.min.css">
-
-
-
-
-
-
- <link href="https://fonts.gstatic.com" rel="preconnect" crossorigin>
- <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,400,400i,700%7CRoboto+Mono&display=fallback">
- <style>body,input{font-family:"Roboto",-apple-system,BlinkMacSystemFont,Helvetica,Arial,sans-serif}code,kbd,pre{font-family:"Roboto Mono",SFMono-Regular,Consolas,Menlo,monospace}</style>
-
-
-
-
-
-
-
-
- </head>
-
-
- <body dir="ltr">
-
-
- <input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
- <input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
- <label class="md-overlay" for="__drawer"></label>
- <div data-md-component="skip">
-
-
- <a href="#dry-friction-mockup" class="md-skip">
- Skip to content
- </a>
-
- </div>
- <div data-md-component="announce">
-
- </div>
-
- <header class="md-header" data-md-component="header">
- <nav class="md-header-nav md-grid" aria-label="Header">
- <a href="../.." title="Jypyter Sketcher" class="md-header-nav__button md-logo" aria-label="Jypyter Sketcher">
-
-
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 003-3 3 3 0 00-3-3 3 3 0 00-3 3 3 3 0 003 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54z"/></svg>
- </a>
- <label class="md-header-nav__button md-icon" for="__drawer">
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2z"/></svg>
- </label>
- <div class="md-header-nav__title" data-md-component="header-title">
-
- <div class="md-header-nav__ellipsis">
- <span class="md-header-nav__topic md-ellipsis">
- Jypyter Sketcher
- </span>
- <span class="md-header-nav__topic md-ellipsis">
-
- DryFriction
-
- </span>
- </div>
-
- </div>
-
- <label class="md-header-nav__button md-icon" for="__search">
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0116 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 019.5 16 6.5 6.5 0 013 9.5 6.5 6.5 0 019.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5z"/></svg>
- </label>
-
- <div class="md-search" data-md-component="search" role="dialog">
- <label class="md-search__overlay" for="__search"></label>
- <div class="md-search__inner" role="search">
- <form class="md-search__form" name="search">
- <input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" data-md-state="active">
- <label class="md-search__icon md-icon" for="__search">
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0116 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 019.5 16 6.5 6.5 0 013 9.5 6.5 6.5 0 019.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5z"/></svg>
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12z"/></svg>
- </label>
- <button type="reset" class="md-search__icon md-icon" aria-label="Clear" data-md-component="search-reset" tabindex="-1">
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41L17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41z"/></svg>
- </button>
- </form>
- <div class="md-search__output">
- <div class="md-search__scrollwrap" data-md-scrollfix>
- <div class="md-search-result" data-md-component="search-result">
- <div class="md-search-result__meta">
- Initializing search
- </div>
- <ol class="md-search-result__list"></ol>
- </div>
- </div>
- </div>
- </div>
- </div>
-
-
- </nav>
- </header>
-
- <div class="md-container" data-md-component="container">
-
-
-
-
-
-
- <main class="md-main" data-md-component="main">
- <div class="md-main__inner md-grid">
-
-
- <div class="md-sidebar md-sidebar--primary" data-md-component="navigation">
- <div class="md-sidebar__scrollwrap">
- <div class="md-sidebar__inner">
- <nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
- <label class="md-nav__title" for="__drawer">
- <a href="../.." title="Jypyter Sketcher" class="md-nav__button md-logo" aria-label="Jypyter Sketcher">
-
-
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 003-3 3 3 0 00-3-3 3 3 0 00-3 3 3 3 0 003 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54z"/></svg>
- </a>
- Jypyter Sketcher
- </label>
-
- <ul class="md-nav__list" data-md-scrollfix>
-
-
-
-
- <li class="md-nav__item">
- <a href="../.." title="Home" class="md-nav__link">
- Home
- </a>
- </li>
-
-
-
-
- <li class="md-nav__item">
- <a href="../../about/" title="About" class="md-nav__link">
- About
- </a>
- </li>
-
-
-
-
- <li class="md-nav__item">
- <a href="../../presentation/" title="Presentation" class="md-nav__link">
- Presentation
- </a>
- </li>
-
-
-
-
- <li class="md-nav__item">
- <a href="../../learningbyexample/" title="Learning by Example" class="md-nav__link">
- Learning by Example
- </a>
- </li>
-
-
-
-
- <li class="md-nav__item">
- <a href="../../shapereference/" title="Shapes Reference" class="md-nav__link">
- Shapes Reference
- </a>
- </li>
-
-
-
-
- <li class="md-nav__item">
- <a href="../../yamlsketcher/" title="YAML files Reference" class="md-nav__link">
- YAML files Reference
- </a>
- </li>
-
-
-
-
- <li class="md-nav__item">
- <a href="../../gallerydoc/" title="Gallery" class="md-nav__link">
- Gallery
- </a>
- </li>
-
- </ul>
- </nav>
- </div>
- </div>
- </div>
-
-
- <div class="md-sidebar md-sidebar--secondary" data-md-component="toc">
- <div class="md-sidebar__scrollwrap">
- <div class="md-sidebar__inner">
-
- <nav class="md-nav md-nav--secondary" aria-label="Table of contents">
-
-
-
-
-
- <label class="md-nav__title" for="__toc">
- <span class="md-nav__icon md-icon">
- <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12z"/></svg>
- </span>
- Table of contents
- </label>
- <ul class="md-nav__list" data-md-scrollfix>
-
- <li class="md-nav__item">
- <a href="#libraries" class="md-nav__link">
- Libraries
- </a>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#sketch-container" class="md-nav__link">
- Sketch container
- </a>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#sketch-yaml-definition" class="md-nav__link">
- Sketch yaml definition
- </a>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#read-yaml-sketch-definition-draw-it" class="md-nav__link">
- Read yaml sketch definition, draw it
- </a>
-
- <nav class="md-nav" aria-label="Read yaml sketch definition, draw it">
- <ul class="md-nav__list">
-
- <li class="md-nav__item">
- <a href="#turn-it-interactiv" class="md-nav__link">
- Turn it interactiv
- </a>
-
- </li>
-
- </ul>
- </nav>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#simulate-sketch-rotation" class="md-nav__link">
- Simulate sketch rotation
- </a>
-
- <nav class="md-nav" aria-label="Simulate sketch rotation">
- <ul class="md-nav__list">
-
- <li class="md-nav__item">
- <a href="#using-svg" class="md-nav__link">
- Using SVG
- </a>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#using-png" class="md-nav__link">
- Using PNG
- </a>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#take-a-canvas-snapshot" class="md-nav__link">
- take a canvas snapshot
- </a>
-
- </li>
-
- </ul>
- </nav>
-
- </li>
-
- <li class="md-nav__item">
- <a href="#sketch-composition" class="md-nav__link">
- Sketch composition
- </a>
-
- </li>
-
- </ul>
-
- </nav>
- </div>
- </div>
- </div>
-
-
- <div class="md-content">
- <article class="md-content__inner md-typeset">
-
-
-
-
-
-
-
- <div class="notebook-content">
- <style type="text/css">/*!
- *
- * IPython notebook
- *
- */
- /* CSS font colors for translated ANSI escape sequences */
- /* The color values are a mix of
- http://www.xcolors.net/dl/baskerville-ivorylight and
- http://www.xcolors.net/dl/euphrasia */
- .ansi-black-fg {
- color: #3E424D;
- }
- .ansi-black-bg {
- background-color: #3E424D;
- }
- .ansi-black-intense-fg {
- color: #282C36;
- }
- .ansi-black-intense-bg {
- background-color: #282C36;
- }
- .ansi-red-fg {
- color: #E75C58;
- }
- .ansi-red-bg {
- background-color: #E75C58;
- }
- .ansi-red-intense-fg {
- color: #B22B31;
- }
- .ansi-red-intense-bg {
- background-color: #B22B31;
- }
- .ansi-green-fg {
- color: #00A250;
- }
- .ansi-green-bg {
- background-color: #00A250;
- }
- .ansi-green-intense-fg {
- color: #007427;
- }
- .ansi-green-intense-bg {
- background-color: #007427;
- }
- .ansi-yellow-fg {
- color: #DDB62B;
- }
- .ansi-yellow-bg {
- background-color: #DDB62B;
- }
- .ansi-yellow-intense-fg {
- color: #B27D12;
- }
- .ansi-yellow-intense-bg {
- background-color: #B27D12;
- }
- .ansi-blue-fg {
- color: #208FFB;
- }
- .ansi-blue-bg {
- background-color: #208FFB;
- }
- .ansi-blue-intense-fg {
- color: #0065CA;
- }
- .ansi-blue-intense-bg {
- background-color: #0065CA;
- }
- .ansi-magenta-fg {
- color: #D160C4;
- }
- .ansi-magenta-bg {
- background-color: #D160C4;
- }
- .ansi-magenta-intense-fg {
- color: #A03196;
- }
- .ansi-magenta-intense-bg {
- background-color: #A03196;
- }
- .ansi-cyan-fg {
- color: #60C6C8;
- }
- .ansi-cyan-bg {
- background-color: #60C6C8;
- }
- .ansi-cyan-intense-fg {
- color: #258F8F;
- }
- .ansi-cyan-intense-bg {
- background-color: #258F8F;
- }
- .ansi-white-fg {
- color: #C5C1B4;
- }
- .ansi-white-bg {
- background-color: #C5C1B4;
- }
- .ansi-white-intense-fg {
- color: #A1A6B2;
- }
- .ansi-white-intense-bg {
- background-color: #A1A6B2;
- }
- .ansi-default-inverse-fg {
- color: #FFFFFF;
- }
- .ansi-default-inverse-bg {
- background-color: #000000;
- }
- .ansi-bold {
- font-weight: bold;
- }
- .ansi-underline {
- text-decoration: underline;
- }
- /* The following styles are deprecated an will be removed in a future version */
- .ansibold {
- font-weight: bold;
- }
- .ansi-inverse {
- outline: 0.5px dotted;
- }
- /* use dark versions for foreground, to improve visibility */
- .ansiblack {
- color: black;
- }
- .ansired {
- color: darkred;
- }
- .ansigreen {
- color: darkgreen;
- }
- .ansiyellow {
- color: #c4a000;
- }
- .ansiblue {
- color: darkblue;
- }
- .ansipurple {
- color: darkviolet;
- }
- .ansicyan {
- color: steelblue;
- }
- .ansigray {
- color: gray;
- }
- /* and light for background, for the same reason */
- .ansibgblack {
- background-color: black;
- }
- .ansibgred {
- background-color: red;
- }
- .ansibggreen {
- background-color: green;
- }
- .ansibgyellow {
- background-color: yellow;
- }
- .ansibgblue {
- background-color: blue;
- }
- .ansibgpurple {
- background-color: magenta;
- }
- .ansibgcyan {
- background-color: cyan;
- }
- .ansibggray {
- background-color: gray;
- }
- div.cell {
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- border-radius: 2px;
- box-sizing: border-box;
- -moz-box-sizing: border-box;
- -webkit-box-sizing: border-box;
- border-width: 1px;
- border-style: solid;
- border-color: transparent;
- width: 100%;
- padding: 5px;
- /* This acts as a spacer between cells, that is outside the border */
- margin: 0px;
- outline: none;
- position: relative;
- overflow: visible;
- }
- div.cell:before {
- position: absolute;
- display: block;
- top: -1px;
- left: -1px;
- width: 5px;
- height: calc(100% + 2px);
- content: '';
- background: transparent;
- }
- div.cell.jupyter-soft-selected {
- border-left-color: #E3F2FD;
- border-left-width: 1px;
- padding-left: 5px;
- border-right-color: #E3F2FD;
- border-right-width: 1px;
- background: #E3F2FD;
- }
- @media print {
- div.cell.jupyter-soft-selected {
- border-color: transparent;
- }
- }
- div.cell.selected,
- div.cell.selected.jupyter-soft-selected {
- border-color: #ababab;
- }
- div.cell.selected:before,
- div.cell.selected.jupyter-soft-selected:before {
- position: absolute;
- display: block;
- top: -1px;
- left: -1px;
- width: 5px;
- height: calc(100% + 2px);
- content: '';
- background: #42A5F5;
- }
- @media print {
- div.cell.selected,
- div.cell.selected.jupyter-soft-selected {
- border-color: transparent;
- }
- }
- .edit_mode div.cell.selected {
- border-color: #66BB6A;
- }
- .edit_mode div.cell.selected:before {
- position: absolute;
- display: block;
- top: -1px;
- left: -1px;
- width: 5px;
- height: calc(100% + 2px);
- content: '';
- background: #66BB6A;
- }
- @media print {
- .edit_mode div.cell.selected {
- border-color: transparent;
- }
- }
- .prompt {
- /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
- min-width: 14ex;
- /* This padding is tuned to match the padding on the CodeMirror editor. */
- padding: 0.4em;
- margin: 0px;
- font-family: monospace;
- text-align: right;
- /* This has to match that of the the CodeMirror class line-height below */
- line-height: 1.21429em;
- /* Don't highlight prompt number selection */
- -webkit-touch-callout: none;
- -webkit-user-select: none;
- -khtml-user-select: none;
- -moz-user-select: none;
- -ms-user-select: none;
- user-select: none;
- /* Use default cursor */
- cursor: default;
- }
- @media (max-width: 540px) {
- .prompt {
- text-align: left;
- }
- }
- div.inner_cell {
- min-width: 0;
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- /* Old browsers */
- -webkit-box-flex: 1;
- -moz-box-flex: 1;
- box-flex: 1;
- /* Modern browsers */
- flex: 1;
- }
- /* input_area and input_prompt must match in top border and margin for alignment */
- div.input_area {
- border: 1px solid #cfcfcf;
- border-radius: 2px;
- background: #f7f7f7;
- line-height: 1.21429em;
- }
- /* This is needed so that empty prompt areas can collapse to zero height when there
- is no content in the output_subarea and the prompt. The main purpose of this is
- to make sure that empty JavaScript output_subareas have no height. */
- div.prompt:empty {
- padding-top: 0;
- padding-bottom: 0;
- }
- div.unrecognized_cell {
- padding: 5px 5px 5px 0px;
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: horizontal;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: horizontal;
- -moz-box-align: stretch;
- display: box;
- box-orient: horizontal;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: row;
- align-items: stretch;
- }
- div.unrecognized_cell .inner_cell {
- border-radius: 2px;
- padding: 5px;
- font-weight: bold;
- color: red;
- border: 1px solid #cfcfcf;
- background: #eaeaea;
- }
- div.unrecognized_cell .inner_cell a {
- color: inherit;
- text-decoration: none;
- }
- div.unrecognized_cell .inner_cell a:hover {
- color: inherit;
- text-decoration: none;
- }
- @media (max-width: 540px) {
- div.unrecognized_cell > div.prompt {
- display: none;
- }
- }
- div.code_cell {
- /* avoid page breaking on code cells when printing */
- }
- @media print {
- div.code_cell {
- page-break-inside: avoid;
- }
- }
- /* any special styling for code cells that are currently running goes here */
- div.input {
- page-break-inside: avoid;
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: horizontal;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: horizontal;
- -moz-box-align: stretch;
- display: box;
- box-orient: horizontal;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: row;
- align-items: stretch;
- }
- @media (max-width: 540px) {
- div.input {
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- }
- }
- /* input_area and input_prompt must match in top border and margin for alignment */
- div.input_prompt {
- color: #303F9F;
- border-top: 1px solid transparent;
- }
- div.input_area > div.highlight {
- margin: 0.4em;
- border: none;
- padding: 0px;
- background-color: transparent;
- }
- div.input_area > div.highlight > pre {
- margin: 0px;
- border: none;
- padding: 0px;
- background-color: transparent;
- }
- /* The following gets added to the <head> if it is detected that the user has a
- * monospace font with inconsistent normal/bold/italic height. See
- * notebookmain.js. Such fonts will have keywords vertically offset with
- * respect to the rest of the text. The user should select a better font.
- * See: https://github.com/ipython/ipython/issues/1503
- *
- * .CodeMirror span {
- * vertical-align: bottom;
- * }
- */
- .CodeMirror {
- line-height: 1.21429em;
- /* Changed from 1em to our global default */
- font-size: 14px;
- height: auto;
- /* Changed to auto to autogrow */
- background: none;
- /* Changed from white to allow our bg to show through */
- }
- .CodeMirror-scroll {
- /* The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
- /* We have found that if it is visible, vertical scrollbars appear with font size changes.*/
- overflow-y: hidden;
- overflow-x: auto;
- }
- .CodeMirror-lines {
- /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
- /* we have set a different line-height and want this to scale with that. */
- /* Note that this should set vertical padding only, since CodeMirror assumes
- that horizontal padding will be set on CodeMirror pre */
- padding: 0.4em 0;
- }
- .CodeMirror-linenumber {
- padding: 0 8px 0 4px;
- }
- .CodeMirror-gutters {
- border-bottom-left-radius: 2px;
- border-top-left-radius: 2px;
- }
- .CodeMirror pre {
- /* In CM3 this went to 4px from 0 in CM2. This sets horizontal padding only,
- use .CodeMirror-lines for vertical */
- padding: 0 0.4em;
- border: 0;
- border-radius: 0;
- }
- .CodeMirror-cursor {
- border-left: 1.4px solid black;
- }
- @media screen and (min-width: 2138px) and (max-width: 4319px) {
- .CodeMirror-cursor {
- border-left: 2px solid black;
- }
- }
- @media screen and (min-width: 4320px) {
- .CodeMirror-cursor {
- border-left: 4px solid black;
- }
- }
- /*
- Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org>
- Adapted from GitHub theme
- */
- .highlight-base {
- color: #000;
- }
- .highlight-variable {
- color: #000;
- }
- .highlight-variable-2 {
- color: #1a1a1a;
- }
- .highlight-variable-3 {
- color: #333333;
- }
- .highlight-string {
- color: #BA2121;
- }
- .highlight-comment {
- color: #408080;
- font-style: italic;
- }
- .highlight-number {
- color: #080;
- }
- .highlight-atom {
- color: #88F;
- }
- .highlight-keyword {
- color: #008000;
- font-weight: bold;
- }
- .highlight-builtin {
- color: #008000;
- }
- .highlight-error {
- color: #f00;
- }
- .highlight-operator {
- color: #AA22FF;
- font-weight: bold;
- }
- .highlight-meta {
- color: #AA22FF;
- }
- /* previously not defined, copying from default codemirror */
- .highlight-def {
- color: #00f;
- }
- .highlight-string-2 {
- color: #f50;
- }
- .highlight-qualifier {
- color: #555;
- }
- .highlight-bracket {
- color: #997;
- }
- .highlight-tag {
- color: #170;
- }
- .highlight-attribute {
- color: #00c;
- }
- .highlight-header {
- color: blue;
- }
- .highlight-quote {
- color: #090;
- }
- .highlight-link {
- color: #00c;
- }
- /* apply the same style to codemirror */
- .cm-s-ipython span.cm-keyword {
- color: #008000;
- font-weight: bold;
- }
- .cm-s-ipython span.cm-atom {
- color: #88F;
- }
- .cm-s-ipython span.cm-number {
- color: #080;
- }
- .cm-s-ipython span.cm-def {
- color: #00f;
- }
- .cm-s-ipython span.cm-variable {
- color: #000;
- }
- .cm-s-ipython span.cm-operator {
- color: #AA22FF;
- font-weight: bold;
- }
- .cm-s-ipython span.cm-variable-2 {
- color: #1a1a1a;
- }
- .cm-s-ipython span.cm-variable-3 {
- color: #333333;
- }
- .cm-s-ipython span.cm-comment {
- color: #408080;
- font-style: italic;
- }
- .cm-s-ipython span.cm-string {
- color: #BA2121;
- }
- .cm-s-ipython span.cm-string-2 {
- color: #f50;
- }
- .cm-s-ipython span.cm-meta {
- color: #AA22FF;
- }
- .cm-s-ipython span.cm-qualifier {
- color: #555;
- }
- .cm-s-ipython span.cm-builtin {
- color: #008000;
- }
- .cm-s-ipython span.cm-bracket {
- color: #997;
- }
- .cm-s-ipython span.cm-tag {
- color: #170;
- }
- .cm-s-ipython span.cm-attribute {
- color: #00c;
- }
- .cm-s-ipython span.cm-header {
- color: blue;
- }
- .cm-s-ipython span.cm-quote {
- color: #090;
- }
- .cm-s-ipython span.cm-link {
- color: #00c;
- }
- .cm-s-ipython span.cm-error {
- color: #f00;
- }
- .cm-s-ipython span.cm-tab {
- background: url();
- background-position: right;
- background-repeat: no-repeat;
- }
- div.output_wrapper {
- /* this position must be relative to enable descendents to be absolute within it */
- position: relative;
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- z-index: 1;
- }
- /* class for the output area when it should be height-limited */
- div.output_scroll {
- /* ideally, this would be max-height, but FF barfs all over that */
- height: 24em;
- /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
- width: 100%;
- overflow: auto;
- border-radius: 2px;
- -webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
- box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
- display: block;
- }
- /* output div while it is collapsed */
- div.output_collapsed {
- margin: 0px;
- padding: 0px;
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- }
- div.out_prompt_overlay {
- height: 100%;
- padding: 0px 0.4em;
- position: absolute;
- border-radius: 2px;
- }
- div.out_prompt_overlay:hover {
- /* use inner shadow to get border that is computed the same on WebKit/FF */
- -webkit-box-shadow: inset 0 0 1px #000;
- box-shadow: inset 0 0 1px #000;
- background: rgba(240, 240, 240, 0.5);
- }
- div.output_prompt {
- color: #D84315;
- }
- /* This class is the outer container of all output sections. */
- div.output_area {
- padding: 0px;
- page-break-inside: avoid;
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: horizontal;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: horizontal;
- -moz-box-align: stretch;
- display: box;
- box-orient: horizontal;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: row;
- align-items: stretch;
- }
- div.output_area .MathJax_Display {
- text-align: left !important;
- }
- div.output_area
- div.output_area
- div.output_area img,
- div.output_area svg {
- max-width: 100%;
- height: auto;
- }
- div.output_area img.unconfined,
- div.output_area svg.unconfined {
- max-width: none;
- }
- div.output_area .mglyph > img {
- max-width: none;
- }
- /* This is needed to protect the pre formating from global settings such
- as that of bootstrap */
- .output {
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- }
- @media (max-width: 540px) {
- div.output_area {
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: vertical;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: vertical;
- -moz-box-align: stretch;
- display: box;
- box-orient: vertical;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: column;
- align-items: stretch;
- }
- }
- div.output_area pre {
- margin: 0;
- padding: 1px 0 1px 0;
- border: 0;
- vertical-align: baseline;
- color: black;
- background-color: transparent;
- border-radius: 0;
- }
- /* This class is for the output subarea inside the output_area and after
- the prompt div. */
- div.output_subarea {
- overflow-x: auto;
- padding: 0.4em;
- /* Old browsers */
- -webkit-box-flex: 1;
- -moz-box-flex: 1;
- box-flex: 1;
- /* Modern browsers */
- flex: 1;
- max-width: calc(100% - 14ex);
- }
- div.output_scroll div.output_subarea {
- overflow-x: visible;
- }
- /* The rest of the output_* classes are for special styling of the different
- output types */
- /* all text output has this class: */
- div.output_text {
- text-align: left;
- color: #000;
- /* This has to match that of the the CodeMirror class line-height below */
- line-height: 1.21429em;
- }
- /* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */
- div.output_stderr {
- background: #fdd;
- /* very light red background for stderr */
- }
- div.output_latex {
- text-align: left;
- }
- /* Empty output_javascript divs should have no height */
- div.output_javascript:empty {
- padding: 0;
- }
- .js-error {
- color: darkred;
- }
- /* raw_input styles */
- div.raw_input_container {
- line-height: 1.21429em;
- padding-top: 5px;
- }
- pre.raw_input_prompt {
- /* nothing needed here. */
- }
- input.raw_input {
- font-family: monospace;
- font-size: inherit;
- color: inherit;
- width: auto;
- /* make sure input baseline aligns with prompt */
- vertical-align: baseline;
- /* padding + margin = 0.5em between prompt and cursor */
- padding: 0em 0.25em;
- margin: 0em 0.25em;
- }
- input.raw_input:focus {
- box-shadow: none;
- }
- p.p-space {
- margin-bottom: 10px;
- }
- div.output_unrecognized {
- padding: 5px;
- font-weight: bold;
- color: red;
- }
- div.output_unrecognized a {
- color: inherit;
- text-decoration: none;
- }
- div.output_unrecognized a:hover {
- color: inherit;
- text-decoration: none;
- }
- .rendered_html {
- color: #000;
- /* any extras will just be numbers: */
- }
- .rendered_html :link {
- text-decoration: underline;
- }
- .rendered_html :visited {
- text-decoration: underline;
- }
- .rendered_html h1:first-child {
- margin-top: 0.538em;
- }
- .rendered_html h2:first-child {
- margin-top: 0.636em;
- }
- .rendered_html h3:first-child {
- margin-top: 0.777em;
- }
- .rendered_html h4:first-child {
- margin-top: 1em;
- }
- .rendered_html h5:first-child {
- margin-top: 1em;
- }
- .rendered_html h6:first-child {
- margin-top: 1em;
- }
- .rendered_html ul:not(.list-inline),
- .rendered_html ol:not(.list-inline) {
- padding-left: 2em;
- }
- .rendered_html * + ul {
- margin-top: 1em;
- }
- .rendered_html * + ol {
- margin-top: 1em;
- }
- .rendered_html pre,
- .rendered_html tr,
- .rendered_html th,
- .rendered_html tbody tr:nth-child(odd) {
- background: #f5f5f5;
- }
- .rendered_html tbody tr:hover {
- background: rgba(66, 165, 245, 0.2);
- }
- .rendered_html * + table {
- margin-top: 1em;
- }
- .rendered_html * + p {
- margin-top: 1em;
- }
- .rendered_html * + img {
- margin-top: 1em;
- }
- .rendered_html img,
- .rendered_html img.unconfined,
- .rendered_html * + .alert {
- margin-top: 1em;
- }
- [dir="rtl"]
- div.text_cell {
- /* Old browsers */
- display: -webkit-box;
- -webkit-box-orient: horizontal;
- -webkit-box-align: stretch;
- display: -moz-box;
- -moz-box-orient: horizontal;
- -moz-box-align: stretch;
- display: box;
- box-orient: horizontal;
- box-align: stretch;
- /* Modern browsers */
- display: flex;
- flex-direction: row;
- align-items: stretch;
- }
- @media (max-width: 540px) {
- div.text_cell > div.prompt {
- display: none;
- }
- }
- div.text_cell_render {
- /*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/
- outline: none;
- resize: none;
- width: inherit;
- border-style: none;
- padding: 0.5em 0.5em 0.5em 0.4em;
- color: #000;
- box-sizing: border-box;
- -moz-box-sizing: border-box;
- -webkit-box-sizing: border-box;
- }
- a.anchor-link:link {
- text-decoration: none;
- padding: 0px 20px;
- visibility: hidden;
- }
- h1:hover .anchor-link,
- h2:hover .anchor-link,
- h3:hover .anchor-link,
- h4:hover .anchor-link,
- h5:hover .anchor-link,
- h6:hover .anchor-link {
- visibility: visible;
- }
- .text_cell.rendered .input_area {
- display: none;
- }
- .text_cell.rendered
- .text_cell.rendered .rendered_html tr,
- .text_cell.rendered .rendered_html th,
- .text_cell.rendered
- .text_cell.unrendered .text_cell_render {
- display: none;
- }
- .text_cell .dropzone .input_area {
- border: 2px dashed #bababa;
- margin: -1px;
- }
- .cm-header-1,
- .cm-header-2,
- .cm-header-3,
- .cm-header-4,
- .cm-header-5,
- .cm-header-6 {
- font-weight: bold;
- font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
- }
- .cm-header-1 {
- font-size: 185.7%;
- }
- .cm-header-2 {
- font-size: 157.1%;
- }
- .cm-header-3 {
- font-size: 128.6%;
- }
- .cm-header-4 {
- font-size: 110%;
- }
- .cm-header-5 {
- font-size: 100%;
- font-style: italic;
- }
- .cm-header-6 {
- font-size: 100%;
- font-style: italic;
- }
- </style>
- <style type="text/css">.highlight-ipynb .hll { background-color: #ffffcc }
- .highlight-ipynb { background: #f8f8f8; }
- .highlight-ipynb .c { color: #408080; font-style: italic } /* Comment */
- .highlight-ipynb .err { border: 1px solid #FF0000 } /* Error */
- .highlight-ipynb .k { color: #008000; font-weight: bold } /* Keyword */
- .highlight-ipynb .o { color: #666666 } /* Operator */
- .highlight-ipynb .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
- .highlight-ipynb .cm { color: #408080; font-style: italic } /* Comment.Multiline */
- .highlight-ipynb .cp { color: #BC7A00 } /* Comment.Preproc */
- .highlight-ipynb .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
- .highlight-ipynb .c1 { color: #408080; font-style: italic } /* Comment.Single */
- .highlight-ipynb .cs { color: #408080; font-style: italic } /* Comment.Special */
- .highlight-ipynb .gd { color: #A00000 } /* Generic.Deleted */
- .highlight-ipynb .ge { font-style: italic } /* Generic.Emph */
- .highlight-ipynb .gr { color: #FF0000 } /* Generic.Error */
- .highlight-ipynb .gh { color: #000080; font-weight: bold } /* Generic.Heading */
- .highlight-ipynb .gi { color: #00A000 } /* Generic.Inserted */
- .highlight-ipynb .go { color: #888888 } /* Generic.Output */
- .highlight-ipynb .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
- .highlight-ipynb .gs { font-weight: bold } /* Generic.Strong */
- .highlight-ipynb .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
- .highlight-ipynb .gt { color: #0044DD } /* Generic.Traceback */
- .highlight-ipynb .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
- .highlight-ipynb .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
- .highlight-ipynb .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
- .highlight-ipynb .kp { color: #008000 } /* Keyword.Pseudo */
- .highlight-ipynb .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
- .highlight-ipynb .kt { color: #B00040 } /* Keyword.Type */
- .highlight-ipynb .m { color: #666666 } /* Literal.Number */
- .highlight-ipynb .s { color: #BA2121 } /* Literal.String */
- .highlight-ipynb .na { color: #7D9029 } /* Name.Attribute */
- .highlight-ipynb .nb { color: #008000 } /* Name.Builtin */
- .highlight-ipynb .nc { color: #0000FF; font-weight: bold } /* Name.Class */
- .highlight-ipynb .no { color: #880000 } /* Name.Constant */
- .highlight-ipynb .nd { color: #AA22FF } /* Name.Decorator */
- .highlight-ipynb .ni { color: #999999; font-weight: bold } /* Name.Entity */
- .highlight-ipynb .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
- .highlight-ipynb .nf { color: #0000FF } /* Name.Function */
- .highlight-ipynb .nl { color: #A0A000 } /* Name.Label */
- .highlight-ipynb .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
- .highlight-ipynb .nt { color: #008000; font-weight: bold } /* Name.Tag */
- .highlight-ipynb .nv { color: #19177C } /* Name.Variable */
- .highlight-ipynb .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
- .highlight-ipynb .w { color: #bbbbbb } /* Text.Whitespace */
- .highlight-ipynb .mb { color: #666666 } /* Literal.Number.Bin */
- .highlight-ipynb .mf { color: #666666 } /* Literal.Number.Float */
- .highlight-ipynb .mh { color: #666666 } /* Literal.Number.Hex */
- .highlight-ipynb .mi { color: #666666 } /* Literal.Number.Integer */
- .highlight-ipynb .mo { color: #666666 } /* Literal.Number.Oct */
- .highlight-ipynb .sa { color: #BA2121 } /* Literal.String.Affix */
- .highlight-ipynb .sb { color: #BA2121 } /* Literal.String.Backtick */
- .highlight-ipynb .sc { color: #BA2121 } /* Literal.String.Char */
- .highlight-ipynb .dl { color: #BA2121 } /* Literal.String.Delimiter */
- .highlight-ipynb .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
- .highlight-ipynb .s2 { color: #BA2121 } /* Literal.String.Double */
- .highlight-ipynb .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
- .highlight-ipynb .sh { color: #BA2121 } /* Literal.String.Heredoc */
- .highlight-ipynb .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
- .highlight-ipynb .sx { color: #008000 } /* Literal.String.Other */
- .highlight-ipynb .sr { color: #BB6688 } /* Literal.String.Regex */
- .highlight-ipynb .s1 { color: #BA2121 } /* Literal.String.Single */
- .highlight-ipynb .ss { color: #19177C } /* Literal.String.Symbol */
- .highlight-ipynb .bp { color: #008000 } /* Name.Builtin.Pseudo */
- .highlight-ipynb .fm { color: #0000FF } /* Name.Function.Magic */
- .highlight-ipynb .vc { color: #19177C } /* Name.Variable.Class */
- .highlight-ipynb .vg { color: #19177C } /* Name.Variable.Global */
- .highlight-ipynb .vi { color: #19177C } /* Name.Variable.Instance */
- .highlight-ipynb .vm { color: #19177C } /* Name.Variable.Magic */
- .highlight-ipynb .il { color: #666666 } /* Literal.Number.Integer.Long */</style><style type="text/css">
- .rendered_html a{text-decoration:inherit !important}.rendered_html :link{text-decoration:inherit !important}.rendered_html :visited{text-decoration:inherit !important}pre code{background-color:inherit !important}.highlight{color:#000000}.highlight code{color:#000000}.highlight .n{color:#333333}.highlight .p{color:#000000}.text_cell .prompt{display:none !important}div.input_prompt{padding:0.2em 0.4em}div.output_prompt{padding:0.4em}.text_cell{margin:0 !important;padding:0 !important;border:none !important}.text_cell_render{margin:0 !important;padding:0 !important;border:none !important}.rendered_html *+p{margin-top:inherit !important}.anchor-link{display:none !important}.code_cell{margin:0 !important;padding:5px 0 !important;border:none !important}.celltoolbar{border:thin solid #CFCFCF;border-bottom:none;background:#EEE;border-radius:2px 2px 0px 0px;width:100%;height:29px;padding-right:4px;box-orient:horizontal;box-align:stretch;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:horizontal;-webkit-box-direction:normal;-ms-flex-direction:row;flex-direction:row;-webkit-box-align:stretch;-ms-flex-align:stretch;align-items:stretch;box-pack:end;-webkit-box-pack:start;-ms-flex-pack:start;justify-content:flex-start;display:-webkit-flex}.celltoolbar .tags_button_container{display:-webkit-box;display:-ms-flexbox;display:flex}.celltoolbar .tags_button_container .tag-container{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:horizontal;-webkit-box-direction:normal;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex:1;-ms-flex-positive:1;flex-grow:1;overflow:hidden;position:relative}.celltoolbar .tags_button_container .tag-container .cell-tag{background-color:#fff;white-space:nowrap;margin:3px 4px;padding:0 4px;border-radius:1px;border:1px solid #ccc;-webkit-box-shadow:none;box-shadow:none;width:inherit;font-size:13px;font-family:"Helvetica Neue", Helvetica, Arial, sans-serif;height:22px;line-height:22px;display:inline-block}div.input_area>div.highlight{margin:0.25em 0.4em !important}.code_cell pre{font-size:12px !important}.output_html table.dataframe{font-family:Arial, sans-serif;font-size:13px;line-height:20px}.output_html table.dataframe th,td{padding:4px;text-align:left}.bk-plot-wrapper tbody tr{background:none !important}.bk-plot-wrapper tbody tr:hover{background:none !important}
- /*# sourceMappingURL=jupyter-fixes.min.css.map */
- </style>
- <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
- <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
- <!-- Loading mathjax macro -->
- <!-- Load mathjax -->
- <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS_HTML"></script>
- <!-- MathJax configuration -->
- <script type="text/x-mathjax-config">
- MathJax.Hub.Config({
- tex2jax: {
- inlineMath: [ ['$','$'], ["\\(","\\)"] ],
- displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
- processEscapes: true,
- processEnvironments: true
- },
- // Center justify equations in code and markdown cells. Elsewhere
- // we use CSS to left justify single line equations in code cells.
- displayAlign: 'center',
- "HTML-CSS": {
- styles: {'.MathJax_Display': {"margin": 0}},
- linebreaks: { automatic: true }
- }
- });
- </script>
- <!-- End of mathjax configuration -->
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h1 id="dry-friction-mockup">Dry Friction mockup<a class="anchor-link" href="#Dry-Friction-mockup">¶</a></h1>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h2 id="libraries">Libraries<a class="anchor-link" href="#Libraries">¶</a></h2>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [1]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="o">%</span><span class="n">matplotlib</span> <span class="n">widget</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <p>import matplotlib as mpl
- mpl.rc('text', usetex = True)
- mpl.rc('font', family = 'serif')</p>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [2]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">time</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [3]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="kn">from</span> <span class="nn">pysketcher</span> <span class="kn">import</span> <span class="o">*</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [4]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="kn">from</span> <span class="nn">ipywidgets</span> <span class="kn">import</span> <span class="n">FloatSlider</span><span class="p">,</span> <span class="n">AppLayout</span><span class="p">,</span> <span class="n">Label</span><span class="p">,</span> <span class="n">HBox</span><span class="p">,</span> <span class="n">Button</span><span class="p">,</span> <span class="n">Output</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [5]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">HTML</span><span class="p">,</span> <span class="n">SVG</span><span class="p">,</span> <span class="n">display</span><span class="p">,</span> <span class="n">clear_output</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [6]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">tan</span><span class="p">,</span> <span class="n">radians</span><span class="p">,</span> <span class="n">sin</span><span class="p">,</span> <span class="n">cos</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h2 id="sketch-container">Sketch container<a class="anchor-link" href="#Sketch-container">¶</a></h2>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [7]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">myfig</span><span class="o">=</span><span class="p">{}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h2 id="sketch-yaml-definition">Sketch yaml definition<a class="anchor-link" href="#Sketch-yaml-definition">¶</a></h2>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [8]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">libraries</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'name'</span><span class="p">:</span> <span class="s2">"head"</span><span class="p">,</span>
- <span class="s1">'shapes'</span><span class="p">:</span><span class="s2">"""</span><span class="se">\</span>
- <span class="s2">libraries: ["from math import tan, radians, sin, cos","from pysketcher import *"]"""</span><span class="p">}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [9]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">constants</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'name'</span><span class="p">:</span> <span class="s2">"constants"</span><span class="p">,</span>
- <span class="s1">'shapes'</span><span class="p">:</span><span class="s2">"""</span><span class="se">\</span>
- <span class="s2">fontsize: 18 # size of the characters</span>
- <span class="s2">g: 9.81 # constant gravity</span>
- <span class="s2">theta: 30.0 # inclined plane angle</span>
- <span class="s2">L: 10.0 # sketch sizing parameter</span>
- <span class="s2">a: 1.0 #</span>
- <span class="s2">xmin: 0.0 # sketech min Abscissa</span>
- <span class="s2">ymin: -3.0 # sketech min Ordinate </span>
- <span class="s2">rl: 2.0 # rectangle width</span>
- <span class="s2">rL: 1.0 # rectangle length</span>
- <span class="s2">"""</span><span class="p">}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [10]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">frame</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'name'</span><span class="p">:</span> <span class="s2">"frame"</span><span class="p">,</span>
- <span class="s1">'shapes'</span><span class="p">:</span><span class="s2">"""</span><span class="se">\</span>
- <span class="s2">setframe: # sketch setup</span>
- <span class="s2"> action: "drawing_tool.set_coordinate_system(xmin=xmin-L/5, xmax=xmin+1.5*L,ymin=ymin, ymax=ymin+1.5*L,instruction_file='tmp_mpl_friction.py')"</span>
- <span class="s2">setblackline: # default frame values and actions</span>
- <span class="s2"> action: "drawing_tool.set_linecolor('black')"</span>
- <span class="s2">B: point(a+L,0) # wall right end</span>
- <span class="s2">A: point(a,tan(radians(theta))*L) # wall left end</span>
- <span class="s2">normal_vec: point(sin(radians(theta)),cos(radians(theta))) # Vector normal to wall</span>
- <span class="s2">tangent_vec: point(cos(radians(theta)),-sin(radians(theta))) # Vector tangent to wall</span>
- <span class="s2">help_line: Line(A,B) # wall line</span>
- <span class="s2">x: a + 3*L/10. # contact point Abscissa</span>
- <span class="s2">y: help_line(x=x) # contact point Ordinate</span>
- <span class="s2">contact: point(x, y) # contact point: middle of the rectangle bottom edge</span>
- <span class="s2">c: contact + rL/2*normal_vec</span>
- <span class="s2">"""</span><span class="p">}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [11]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">body</span><span class="o">=</span><span class="p">{</span><span class="s1">'name'</span><span class="p">:</span> <span class="s2">"body"</span><span class="p">,</span>
- <span class="s1">'shapes'</span><span class="p">:</span><span class="s2">"""</span><span class="se">\</span>
- <span class="s2">rectangle: </span>
- <span class="s2"> formula: Rectangle(contact, rl, rL)</span>
- <span class="s2"> style:</span>
- <span class="s2"> linecolor: blue</span>
- <span class="s2"> filled_curves: blue</span>
- <span class="s2"> transform: ["rotate(-theta, contact)",</span>
- <span class="s2"> "translate(-rl/2*tangent_vec)"]</span>
- <span class="s2">N: </span>
- <span class="s2"> formula: Force(contact - rl*normal_vec, contact, r'$N$', text_pos='start')</span>
- <span class="s2"> style:</span>
- <span class="s2"> linecolor: black</span>
- <span class="s2">wheel: </span>
- <span class="s2"> formula: "Composition({'outer': rectangle})" </span>
- <span class="s2"> style:</span>
- <span class="s2"> shadow: 1</span>
- <span class="s2">mc:</span>
- <span class="s2"> formula: Text(r'$c$', c)</span>
- <span class="s2">body: </span>
- <span class="s2"> formula: "Composition({'wheel': wheel, 'N': N, 'mc': mc})"</span>
- <span class="s2"> style:</span>
- <span class="s2"> linecolor: black</span>
- <span class="s2">"""</span><span class="p">}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [12]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">plan</span><span class="o">=</span><span class="p">{</span><span class="s1">'name'</span><span class="p">:</span> <span class="s2">"plan"</span><span class="p">,</span>
- <span class="s1">'shapes'</span><span class="p">:</span><span class="s2">"""</span><span class="se">\</span>
- <span class="s2">mB:</span>
- <span class="s2"> formula: Text(r'$B$',B)</span>
- <span class="s2">mA:</span>
- <span class="s2"> formula: Text(r'$A$', A)</span>
- <span class="s2">wall: </span>
- <span class="s2"> formula: Wall(x=[A[0], B[0]], y=[A[1], B[1]], thickness=-0.25,transparent=False)</span>
- <span class="s2"> style:</span>
- <span class="s2"> linecolor: black </span>
- <span class="s2">x_const: </span>
- <span class="s2"> formula: Line(contact, contact + point(0,4))</span>
- <span class="s2"> style:</span>
- <span class="s2"> linestyle: dotted</span>
- <span class="s2"> transform: rotate(-theta, contact)</span>
- <span class="s2">x_axis: </span>
- <span class="s2"> formula: "Axis(start=contact+ 2*rl*normal_vec, length=2*rl,label='$x$', rotation_angle=-theta)"</span>
- <span class="s2">plan: </span>
- <span class="s2"> formula: "Composition({'body': body, 'inclined wall': wall, 'x start': x_const, 'x axis': x_axis, 'mA': mA, 'mB': mB})"</span>
- <span class="s2">"""</span><span class="p">}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [13]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">friction</span><span class="o">=</span><span class="p">{</span><span class="s1">'name'</span><span class="p">:</span> <span class="s2">"friction"</span><span class="p">,</span>
- <span class="s1">'shapes'</span><span class="p">:</span><span class="s2">"""</span><span class="se">\</span>
- <span class="s2">mg: </span>
- <span class="s2"> formula: Gravity(c, rl, text='$Mg$')</span>
- <span class="s2"> style:</span>
- <span class="s2"> linecolor: black</span>
- <span class="s2">angle: </span>
- <span class="s2"> formula: "Arc_wText(r'$<bslash>theta$', center=B, radius=3, start_angle=180-theta, arc_angle=theta, fontsize=fontsize)"</span>
- <span class="s2"> style:</span>
- <span class="s2"> linecolor: black</span>
- <span class="s2"> linewidth: 1</span>
- <span class="s2">ground: </span>
- <span class="s2"> formula: Line((B[0]-L/10., 0), (B[0]-L/2.,0))</span>
- <span class="s2"> stlye:</span>
- <span class="s2"> linecolor: black</span>
- <span class="s2"> linestyle: dashed</span>
- <span class="s2"> linewidth: 1</span>
- <span class="s2">friction: </span>
- <span class="s2"> formula: "Composition({'plan': plan, 'ground': ground, 'mg': mg, 'angle': angle})"</span>
- <span class="s2">"""</span><span class="p">}</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h2 id="read-yaml-sketch-definition-draw-it">Read yaml sketch definition, draw it<a class="anchor-link" href="#Read-yaml-sketch-definition,-draw-it">¶</a></h2>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [14]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="k">if</span> <span class="n">sketchParse</span><span class="p">(</span><span class="n">libraries</span><span class="p">,</span><span class="n">myfig</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">sketchParse</span><span class="p">(</span><span class="n">constants</span><span class="p">,</span><span class="n">myfig</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">sketchParse</span><span class="p">(</span><span class="n">frame</span><span class="p">,</span><span class="n">myfig</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">sketchParse</span><span class="p">(</span><span class="n">body</span><span class="p">,</span><span class="n">myfig</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">sketchParse</span><span class="p">(</span><span class="n">plan</span><span class="p">,</span><span class="n">myfig</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">sketchParse</span><span class="p">(</span><span class="n">friction</span><span class="p">,</span><span class="n">myfig</span><span class="p">):</span>
- <span class="nb">print</span><span class="p">(</span><span class="s2">"success"</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt"></div>
- <div class="output_subarea output_stream output_stdout output_text">
- <pre>success
- </pre>
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [15]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">d</span> <span class="o">=</span> <span class="n">myfig</span><span class="p">[</span><span class="s1">'friction'</span><span class="p">]</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [16]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">drawing_tool</span><span class="o">.</span><span class="n">display</span><span class="p">()</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [17]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="k">def</span> <span class="nf">doright</span><span class="p">(</span><span class="n">change</span><span class="p">):</span>
- <span class="n">rotate</span><span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">doleft</span><span class="p">(</span><span class="n">change</span><span class="p">):</span>
- <span class="n">rotate</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">rotate</span><span class="p">(</span><span class="n">theta</span><span class="p">):</span>
- <span class="n">angle</span> <span class="o">=</span> <span class="n">myfig</span><span class="p">[</span><span class="s1">'theta'</span><span class="p">]</span>
- <span class="n">angle</span> <span class="o">-=</span> <span class="n">theta</span>
- <span class="n">myfig</span><span class="p">[</span><span class="s1">'theta'</span><span class="p">]</span> <span class="o">=</span> <span class="n">angle</span>
- <span class="n">drawing_tool</span><span class="o">.</span><span class="n">erase</span><span class="p">()</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">myfig</span><span class="p">[</span><span class="s1">'plan'</span><span class="p">][</span><span class="s1">'body'</span><span class="p">][</span><span class="s1">'mc'</span><span class="p">]</span><span class="o">.</span><span class="n">x</span>
- <span class="n">y</span> <span class="o">=</span> <span class="n">myfig</span><span class="p">[</span><span class="s1">'plan'</span><span class="p">][</span><span class="s1">'body'</span><span class="p">][</span><span class="s1">'mc'</span><span class="p">]</span><span class="o">.</span><span class="n">y</span>
- <span class="n">myfig</span><span class="p">[</span><span class="s1">'plan'</span><span class="p">]</span><span class="o">.</span><span class="n">rotate</span><span class="p">(</span><span class="n">theta</span><span class="p">,</span><span class="n">myfig</span><span class="p">[</span><span class="s1">'B'</span><span class="p">])</span>
- <span class="n">xf</span> <span class="o">=</span> <span class="n">myfig</span><span class="p">[</span><span class="s1">'plan'</span><span class="p">][</span><span class="s1">'body'</span><span class="p">][</span><span class="s1">'mc'</span><span class="p">]</span><span class="o">.</span><span class="n">x</span>
- <span class="n">yf</span> <span class="o">=</span> <span class="n">myfig</span><span class="p">[</span><span class="s1">'plan'</span><span class="p">][</span><span class="s1">'body'</span><span class="p">][</span><span class="s1">'mc'</span><span class="p">]</span><span class="o">.</span><span class="n">y</span>
- <span class="n">trans</span> <span class="o">=</span> <span class="n">point</span><span class="p">(</span><span class="n">xf</span><span class="o">-</span><span class="n">x</span><span class="p">,</span><span class="n">yf</span><span class="o">-</span><span class="n">y</span><span class="p">)</span>
- <span class="n">myfig</span><span class="p">[</span><span class="s1">'angle'</span><span class="p">]</span><span class="o">.</span><span class="n">changeAngle</span><span class="p">(</span><span class="mi">180</span><span class="o">-</span><span class="n">angle</span><span class="p">,</span> <span class="n">angle</span><span class="p">)</span>
- <span class="n">myfig</span><span class="p">[</span><span class="s1">'mg'</span><span class="p">]</span><span class="o">.</span><span class="n">translate</span><span class="p">(</span><span class="n">trans</span><span class="p">)</span>
- <span class="n">myfig</span><span class="p">[</span><span class="s1">'friction'</span><span class="p">]</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [18]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">left</span> <span class="o">=</span> <span class="n">Button</span><span class="p">(</span>
- <span class="n">description</span> <span class="o">=</span> <span class="s1">''</span><span class="p">,</span>
- <span class="n">icon</span> <span class="o">=</span> <span class="s1">'rotate-left'</span><span class="p">,</span>
- <span class="p">)</span>
- <span class="n">left</span><span class="o">.</span><span class="n">on_click</span><span class="p">(</span><span class="n">doleft</span><span class="p">)</span>
- <span class="n">right</span> <span class="o">=</span> <span class="n">Button</span><span class="p">(</span>
- <span class="n">description</span> <span class="o">=</span> <span class="s1">''</span><span class="p">,</span>
- <span class="n">icon</span> <span class="o">=</span> <span class="s1">'rotate-right'</span><span class="p">,</span>
- <span class="p">)</span>
- <span class="n">right</span><span class="o">.</span><span class="n">on_click</span><span class="p">(</span><span class="n">doright</span><span class="p">)</span>
- <span class="n">output</span> <span class="o">=</span> <span class="n">Output</span><span class="p">()</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [19]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">applayout</span> <span class="o">=</span> <span class="n">AppLayout</span><span class="p">(</span>
- <span class="n">center</span><span class="o">=</span><span class="n">output</span><span class="p">,</span>
- <span class="n">footer</span><span class="o">=</span><span class="n">HBox</span><span class="p">([</span><span class="n">left</span><span class="p">,</span><span class="n">right</span><span class="p">]),</span>
- <span class="n">pane_heights</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
- <span class="p">)</span>
- <span class="c1">#drawing_tool.mpl.ion()</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [20]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">applayout</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt"></div>
-
-
- <div id="91d670eb-7a07-411a-ba89-c018cb4464d9"></div>
- <div class="output_subarea output_widget_view ">
- <script type="text/javascript">
- var element = $('#91d670eb-7a07-411a-ba89-c018cb4464d9');
- </script>
- <script type="application/vnd.jupyter.widget-view+json">
- {"model_id": "ad61cb79665e4d639cb2a2bce7445c33", "version_major": 2, "version_minor": 0}
- </script>
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [21]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="k">with</span> <span class="n">output</span><span class="p">:</span>
- <span class="n">clear_output</span><span class="p">()</span>
- <span class="n">display</span><span class="p">(</span><span class="n">drawing_tool</span><span class="o">.</span><span class="n">mpl</span><span class="o">.</span><span class="n">gcf</span><span class="p">()</span><span class="o">.</span><span class="n">canvas</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h3 id="turn-it-interactiv">Turn it interactiv<a class="anchor-link" href="#Turn-it-interactiv">¶</a></h3>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [22]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">drawing_tool</span><span class="o">.</span><span class="n">mpl</span><span class="o">.</span><span class="n">ion</span><span class="p">()</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <p>Use left and right rotation button to rotate the sketch</p>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h2 id="simulate-sketch-rotation">Simulate sketch rotation<a class="anchor-link" href="#Simulate-sketch-rotation">¶</a></h2>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h3 id="using-svg">Using SVG<a class="anchor-link" href="#Using-SVG">¶</a></h3>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [23]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">):</span>
- <span class="n">doright</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
- <span class="n">clear_output</span><span class="p">(</span><span class="n">wait</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="n">display</span><span class="p">(</span><span class="n">SVG</span><span class="p">(</span><span class="n">sketch2SVG</span><span class="p">()))</span>
- <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">0.01</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt"></div>
- <div class="output_svg output_subarea ">
- <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" height="345.6pt" version="1.1" viewBox="0 0 460.8 345.6" width="460.8pt">
- <metadata>
- <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
- <cc:Work>
- <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
- <dc:date>2020-08-05T18:54:57.809254</dc:date>
- <dc:format>image/svg+xml</dc:format>
- <dc:creator>
- <cc:Agent>
- <dc:title>Matplotlib v3.3.0, https://matplotlib.org/</dc:title>
- </cc:Agent>
- </dc:creator>
- </cc:Work>
- </rdf:RDF>
- </metadata>
- <defs>
- <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style>
- </defs>
- <g id="figure_1">
- <g id="patch_1">
- <path d="M 0 345.6 L 460.8 345.6 L 460.8 0 L 0 0 z " style="fill:#ffffff;"/>
- </g>
- <g id="axes_1">
- <g id="line2d_1">
- <path clip-path="url(#p5a080815a5)" d="M 277.288022 101.714264 L 286.471336 135.986858 L 303.607633 131.395201 L 294.424319 97.122607 L 277.288022 101.714264 " style="fill:none;stroke:#808080;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="patch_2">
- <path clip-path="url(#p5a080815a5)" d="M 274.288022 98.714264 L 283.471336 132.986858 L 300.607633 128.395201 L 291.424319 94.122607 z " style="fill:#0000ff;stroke:#000000;stroke-linejoin:miter;stroke-width:2;"/>
- </g>
- <g id="patch_3">
- <path clip-path="url(#p5a080815a5)" d="M 278.879679 115.850561 L 273.905348 119.134883 L 273.41978 117.32272 L 244.609381 125.042443 L 244.604789 125.025307 L 273.415189 117.305584 L 272.929621 115.49342 z " style="stroke:#000000;stroke-linejoin:miter;stroke-width:2;"/>
- </g>
- <g id="patch_4">
- <path clip-path="url(#p5a080815a5)" d="M 262.973713 56.488687 L 315.9936 254.3616 L 312.85744 257.49776 L 259.837553 59.624847 z " style="fill:url(#h4cf234f0f6);stroke:#000000;stroke-linejoin:miter;stroke-width:2;"/>
- </g>
- <g id="patch_5">
- <path clip-path="url(#p5a080815a5)" d="M 287.447827 149.036333 L 285.562867 143.381453 L 287.438957 143.381453 L 287.438957 113.554733 L 287.456698 113.554733 L 287.456698 143.381453 L 289.332787 143.381453 z " style="stroke:#000000;stroke-linejoin:miter;stroke-width:2;"/>
- </g>
- <g id="line2d_2">
- <path clip-path="url(#p5a080815a5)" d="M 244.607085 125.033875 L 278.879679 115.850561 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="line2d_3">
- <path clip-path="url(#p5a080815a5)" d="M 278.879679 115.850561 L 347.424867 97.483934 " style="fill:none;stroke:#000000;stroke-dasharray:2,3.3;stroke-dashoffset:0;stroke-width:2;"/>
- </g>
- <g id="line2d_4">
- <path clip-path="url(#p5a080815a5)" d="M 347.424867 97.483934 L 365.791494 166.029121 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="line2d_5">
- <path clip-path="url(#p5a080815a5)" d="M 367.352658 160.20278 L 365.791494 166.029121 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="line2d_6">
- <path clip-path="url(#p5a080815a5)" d="M 361.526317 161.763944 L 365.791494 166.029121 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="line2d_7">
- <path clip-path="url(#p5a080815a5)" d="M 298.2528 254.3616 L 227.2896 254.3616 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="line2d_8">
- <path clip-path="url(#p5a080815a5)" d="M 287.447827 113.554733 L 287.447827 149.036333 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
- </g>
- <g id="line2d_9">
- <path clip-path="url(#p5a080815a5)" d="M 302.218629 202.952709 L 298.88582 203.963706 L 295.626269 205.190514 L 292.453934 206.62788 L 289.3824 208.26965 L 286.424819 210.108792 L 283.593856 212.137431 L 280.901633 214.346881 L 278.35968 216.72768 L 275.978881 219.269633 L 273.769431 221.961856 L 271.740792 224.792819 L 269.90165 227.7504 L 268.25988 230.821934 L 266.822514 233.994269 L 265.595706 237.25382 L 264.584709 240.586629 L 263.793853 243.978425 L 263.226525 247.414683 L 262.885153 250.880688 L 262.7712 254.3616 L 262.7712 254.3616 " style="fill:none;stroke:#000000;stroke-linecap:square;"/>
- </g>
- <g id="text_1">
- <!-- $N$ -->
- <g transform="translate(230.885044 127.245523)scale(0.14 -0.14)">
- <defs>
- <path d="M 74 57.53125 C 75.09375 61.8125 76.703125 64.796875 84.296875 65.09375 C 84.59375 65.09375 85.796875 65.1875 85.796875 66.890625 C 85.796875 68 84.90625 68 84.5 68 C 82.5 68 77.40625 67.796875 75.40625 67.796875 L 70.59375 67.796875 C 69.203125 67.796875 67.40625 68 66 68 C 65.40625 68 64.203125 68 64.203125 66.09375 C 64.203125 65.09375 65 65.09375 65.703125 65.09375 C 71.703125 64.890625 72.09375 62.609375 72.09375 60.8125 C 72.09375 59.921875 72 59.625 71.703125 58.21875 L 60.40625 13.34375 L 39 66.296875 C 38.296875 67.890625 38.203125 68 36 68 L 23.796875 68 C 21.796875 68 20.90625 68 20.90625 66.09375 C 20.90625 65.09375 21.59375 65.09375 23.5 65.09375 C 24 65.09375 29.90625 65.09375 29.90625 64.203125 C 29.90625 64 29.703125 63.203125 29.59375 62.90625 L 16.296875 10.15625 C 15.09375 5.28125 12.703125 3.1875 6.09375 2.890625 C 5.59375 2.890625 4.59375 2.796875 4.59375 1 C 4.59375 0 5.59375 0 5.90625 0 C 7.90625 0 13 0.1875 15 0.1875 L 19.796875 0.1875 C 21.203125 0.1875 22.90625 0 24.296875 0 C 25 0 26.09375 0 26.09375 1.890625 C 26.09375 2.796875 25.09375 2.890625 24.703125 2.890625 C 21.40625 2.984375 18.203125 3.59375 18.203125 7.171875 C 18.203125 7.96875 18.40625 8.859375 18.59375 9.65625 L 32.09375 62.90625 C 32.703125 61.90625 32.703125 61.703125 33.09375 60.8125 L 56.90625 1.796875 C 57.40625 0.59375 57.59375 0 58.5 0 C 59.5 0 59.59375 0.296875 60 2 z " id="CMMI12-78"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-78"/>
- </g>
- </g>
- <g id="text_2">
- <!-- $c$ -->
- <g transform="translate(284.509004 113.554733)scale(0.14 -0.14)">
- <defs>
- <path d="M 39.09375 38 C 37.203125 38 36.296875 38 34.90625 36.796875 C 34.296875 36.296875 33.203125 34.796875 33.203125 33.1875 C 33.203125 31.1875 34.703125 29.984375 36.59375 29.984375 C 39 29.984375 41.703125 31.984375 41.703125 35.984375 C 41.703125 40.484375 37.09375 44 30.203125 44 C 17.09375 44 4 30.1875 4 15.796875 C 4 6.96875 9.40625 -1 19.59375 -1 C 33.203125 -1 41.796875 9.71875 41.796875 11.03125 C 41.796875 11.640625 41.203125 12.140625 40.796875 12.140625 C 40.5 12.140625 40.40625 12.046875 39.5 11.125 C 33.09375 2.515625 23.59375 1 19.796875 1 C 12.90625 1 10.703125 7.078125 10.703125 12.140625 C 10.703125 15.6875 12.40625 25.53125 16 32.390625 C 18.59375 37.09375 24 41.984375 30.296875 41.984375 C 31.59375 41.984375 37.09375 41.8125 39.09375 38 z " id="CMMI12-99"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-99"/>
- </g>
- </g>
- <g id="text_3">
- <!-- $x$ -->
- <g transform="translate(363.645736 172.502833)scale(0.14 -0.14)">
- <defs>
- <path d="M 47.40625 41 C 44.203125 40.390625 43 37.984375 43 36.09375 C 43 33.6875 44.90625 32.890625 46.296875 32.890625 C 49.296875 32.890625 51.40625 35.484375 51.40625 38.1875 C 51.40625 42.09375 46.59375 44 42.40625 44 C 36.296875 44 32.90625 38.296875 32 36.390625 C 29.703125 43.59375 23.5 44 21.703125 44 C 11.5 44 6.09375 31.140625 6.09375 28.890625 C 6.09375 28.484375 6.5 27.96875 7.203125 27.96875 C 8 27.96875 8.203125 28.578125 8.40625 28.984375 C 11.796875 40.1875 18.5 41.984375 21.40625 41.984375 C 25.90625 41.984375 26.796875 38.09375 26.796875 35.6875 C 26.796875 33.484375 26.203125 31.140625 25 26.21875 L 21.59375 12.15625 C 20.09375 6.09375 17.203125 1 11.90625 1 C 11.40625 1 8.90625 1 6.796875 1.96875 C 10.40625 2.59375 11.203125 5.59375 11.203125 6.796875 C 11.203125 8.796875 9.703125 10 7.796875 10 C 5.40625 10 2.796875 7.890625 2.796875 4.6875 C 2.796875 0.890625 7.5 -1 11.796875 -1 C 16.59375 -1 20 2.390625 22.09375 6.484375 C 23.703125 1 28.703125 -1 32.40625 -1 C 42.59375 -1 48 11.734375 48 14 C 48 14.515625 47.59375 14.921875 47 14.921875 C 46.09375 14.921875 46 14.40625 45.703125 13.59375 C 43 4.6875 37.203125 1 32.703125 1 C 29.203125 1 27.296875 3.1875 27.296875 7.296875 C 27.296875 9.484375 27.703125 11.125 29.296875 17.90625 L 32.796875 31.859375 C 34.296875 37.890625 37.703125 41.984375 42.296875 41.984375 C 42.5 41.984375 45.296875 41.984375 47.40625 41 z " id="CMMI12-120"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-120"/>
- </g>
- </g>
- <g id="text_4">
- <!-- $A$ -->
- <g transform="translate(257.854763 56.488687)scale(0.14 -0.14)">
- <defs>
- <path d="M 17 11.25 C 13.5 5.234375 10.09375 3.203125 5.296875 2.890625 C 4.203125 2.796875 3.40625 2.796875 3.40625 1 C 3.40625 0.390625 3.90625 0 4.59375 0 C 6.40625 0 10.90625 0.1875 12.703125 0.1875 C 15.59375 0.1875 18.796875 0 21.59375 0 C 22.203125 0 23.40625 0 23.40625 1.890625 C 23.40625 2.796875 22.59375 2.890625 22 2.890625 C 19.703125 3.09375 17.796875 3.90625 17.796875 6.359375 C 17.796875 7.78125 18.40625 8.90625 19.703125 11.15625 L 27.296875 24 L 52.796875 24 C 52.90625 23.078125 52.90625 22.265625 53 21.34375 C 53.296875 18.6875 54.5 8.09375 54.5 6.15625 C 54.5 3.09375 49.40625 2.890625 47.796875 2.890625 C 46.703125 2.890625 45.59375 2.890625 45.59375 1.09375 C 45.59375 0 46.5 0 47.09375 0 C 48.796875 0 50.796875 0.1875 52.5 0.1875 L 58.203125 0.1875 C 64.296875 0.1875 68.703125 0 68.796875 0 C 69.5 0 70.59375 0 70.59375 1.890625 C 70.59375 2.890625 69.703125 2.890625 68.203125 2.890625 C 62.703125 2.890625 62.59375 3.8125 62.296875 6.875 L 56.203125 68.796875 C 56 70.796875 55.59375 71 54.5 71 C 53.5 71 52.90625 70.796875 52 69.296875 z M 29 26.890625 L 49.09375 59.859375 L 52.5 26.890625 z " id="CMMI12-65"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-65"/>
- </g>
- </g>
- <g id="text_5">
- <!-- $B$ -->
- <g transform="translate(310.806045 254.3616)scale(0.14 -0.14)">
- <defs>
- <path d="M 36.59375 61.171875 C 37.5 64.890625 37.90625 65.09375 41.796875 65.09375 L 54.796875 65.09375 C 66.09375 65.09375 66.09375 55.421875 66.09375 54.515625 C 66.09375 46.359375 58 36 44.796875 36 L 30.40625 36 z M 53.5 35.1875 C 64.40625 37.203125 74.296875 44.859375 74.296875 54.109375 C 74.296875 61.96875 67.40625 68 56.09375 68 L 24 68 C 22.09375 68 21.203125 68 21.203125 66.09375 C 21.203125 65.09375 22.09375 65.09375 23.59375 65.09375 C 29.703125 65.09375 29.703125 64.28125 29.703125 63.171875 C 29.703125 62.984375 29.703125 62.375 29.296875 60.859375 L 15.796875 7.328125 C 14.90625 3.875 14.703125 2.890625 7.703125 2.890625 C 5.796875 2.890625 4.796875 2.890625 4.796875 1.09375 C 4.796875 0 5.40625 0 7.40625 0 L 41.703125 0 C 57 0 68.796875 11.453125 68.796875 21.390625 C 68.796875 29.46875 61.59375 34.390625 53.5 35.1875 z M 39.296875 2.890625 L 25.796875 2.890625 C 24.40625 2.890625 24.203125 2.890625 23.59375 2.984375 C 22.5 3.09375 22.40625 3.28125 22.40625 4.078125 C 22.40625 4.765625 22.59375 5.359375 22.796875 6.234375 L 29.796875 34 L 48.59375 34 C 60.40625 34 60.40625 23.171875 60.40625 22.375 C 60.40625 12.9375 51.703125 2.890625 39.296875 2.890625 z " id="CMMI12-66"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-66"/>
- </g>
- </g>
- <g id="text_6">
- <!-- $Mg$ -->
- <g transform="translate(276.843467 157.581485)scale(0.14 -0.14)">
- <defs>
- <path d="M 90.796875 60.71875 C 91.703125 64.09375 91.90625 65.09375 99 65.09375 C 100.90625 65.09375 101.796875 65.09375 101.796875 66.984375 C 101.796875 68 101.09375 68 99.203125 68 L 87.203125 68 C 84.703125 68 84.59375 67.890625 83.5 66.296875 L 47 8.859375 L 39.5 65.796875 C 39.203125 68 39.09375 68 36.5 68 L 24.09375 68 C 22.203125 68 21.296875 68 21.296875 66.09375 C 21.296875 65.09375 22.203125 65.09375 23.703125 65.09375 C 29.796875 65.09375 29.796875 64.296875 29.796875 63.203125 C 29.796875 63 29.796875 62.40625 29.40625 60.90625 L 16.59375 10.15625 C 15.40625 5.375 13.09375 3.1875 6.40625 2.890625 C 6.09375 2.890625 4.90625 2.796875 4.90625 1.09375 C 4.90625 0 5.796875 0 6.203125 0 C 8.203125 0 13.296875 0.1875 15.296875 0.1875 L 20.09375 0.1875 C 21.5 0.1875 23.203125 0 24.59375 0 C 25.296875 0 26.40625 0 26.40625 1.890625 C 26.40625 2.796875 25.40625 2.890625 25 2.890625 C 21.703125 2.984375 18.5 3.59375 18.5 7.171875 C 18.5 8.171875 18.5 8.265625 18.90625 9.65625 L 32.703125 64.5 L 32.796875 64.5 L 41.09375 2.6875 C 41.40625 0.296875 41.5 0 42.40625 0 C 43.5 0 44 0.796875 44.5 1.6875 L 84.703125 64.984375 L 84.796875 64.984375 L 70.296875 7.375 C 69.40625 3.890625 69.203125 2.890625 62.203125 2.890625 C 60.296875 2.890625 59.296875 2.890625 59.296875 1.09375 C 59.296875 0 60.203125 0 60.796875 0 C 62.5 0 64.5 0.1875 66.203125 0.1875 L 78 0.1875 C 79.703125 0.1875 81.796875 0 83.5 0 C 84.296875 0 85.40625 0 85.40625 1.890625 C 85.40625 2.890625 84.5 2.890625 83 2.890625 C 76.90625 2.890625 76.90625 3.6875 76.90625 4.6875 C 76.90625 4.78125 76.90625 5.484375 77.09375 6.28125 z " id="CMMI12-77"/>
- <path d="M 33.796875 12.671875 C 33.40625 11.0625 33.203125 10.671875 31.90625 9.171875 C 27.796875 3.890625 23.59375 2 20.5 2 C 17.203125 2 14.09375 4.578125 14.09375 11.46875 C 14.09375 16.75 17.09375 27.921875 19.296875 32.421875 C 22.203125 38 26.703125 41.984375 30.90625 41.984375 C 37.5 41.984375 38.796875 33.8125 38.796875 33.21875 L 38.5 31.8125 z M 40 37.40625 C 38.703125 40.296875 35.90625 44 30.90625 44 C 20 44 7.59375 30.328125 7.59375 15.453125 C 7.59375 5.078125 13.90625 0 20.296875 0 C 25.59375 0 30.296875 4.1875 32.09375 6.1875 L 29.90625 -2.75 C 28.5 -8.125 27.90625 -10.578125 24.296875 -14 C 20.203125 -18 16.40625 -18 14.203125 -18 C 11.203125 -18 8.703125 -17.8125 6.203125 -17.03125 C 9.40625 -16.15625 10.203125 -13.40625 10.203125 -12.328125 C 10.203125 -10.765625 9 -9.203125 6.796875 -9.203125 C 4.40625 -9.203125 1.796875 -11.15625 1.796875 -14.390625 C 1.796875 -18.40625 5.90625 -20 14.40625 -20 C 27.296875 -20 34 -11.84375 35.296875 -6.5625 L 46.40625 37.90625 C 46.703125 39.09375 46.703125 39.296875 46.703125 39.5 C 46.703125 40.890625 45.59375 42 44.09375 42 C 41.703125 42 40.296875 40 40 37.3125 z " id="CMMI12-103"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-77"/>
- <use transform="translate(104.780079 0)scale(0.996264)" xlink:href="#CMMI12-103"/>
- </g>
- </g>
- <g id="text_7">
- <!-- $\theta$ -->
- <g transform="translate(265.690216 218.90188)scale(0.18 -0.18)">
- <defs>
- <path d="M 44.296875 50 C 44.296875 60.140625 41.09375 70 32.90625 70 C 18.90625 70 4 40.859375 4 18.984375 C 4 14.40625 5 -1 15.5 -1 C 29.09375 -1 44.296875 27.421875 44.296875 50 z M 14 36 C 15.5 41.859375 17.59375 50.203125 21.59375 57.265625 C 24.90625 63.21875 28.40625 67.984375 32.796875 67.984375 C 36.09375 67.984375 38.296875 65.203125 38.296875 55.671875 C 38.296875 52.09375 38 47.125 35.09375 36 z M 34.40625 33 C 31.90625 23.25 29.796875 17 26.203125 10.734375 C 23.296875 5.65625 19.796875 1 15.59375 1 C 12.5 1 10 3.375 10 13.21875 C 10 19.671875 11.59375 26.4375 13.203125 33 z " id="CMMI12-18"/>
- </defs>
- <use transform="scale(0.996264)" xlink:href="#CMMI12-18"/>
- </g>
- </g>
- </g>
- </g>
- <defs>
- <clipPath id="p5a080815a5">
- <rect height="266.112" width="301.5936" x="85.3632" y="41.472"/>
- </clipPath>
- </defs>
- <defs>
- <pattern height="72" id="h4cf234f0f6" patternUnits="userSpaceOnUse" width="72" x="0" y="0">
- <rect fill="#ffffff" height="73" width="73" x="0" y="0"/>
- <path d="M -36 36 L 36 -36 M -24 48 L 48 -24 M -12 60 L 60 -12 M 0 72 L 72 0 M 12 84 L 84 12 M 24 96 L 96 24 M 36 108 L 108 36 " style="fill:#000000;stroke:#000000;stroke-linecap:butt;stroke-linejoin:miter;stroke-width:1.0;"/>
- </pattern>
- </defs>
- </svg>
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h3 id="using-png">Using PNG<a class="anchor-link" href="#Using-PNG">¶</a></h3>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [24]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">):</span>
- <span class="n">doright</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
- <span class="n">clear_output</span><span class="p">(</span><span class="n">wait</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="n">display</span><span class="p">(</span><span class="n">sketch2PNG</span><span class="p">())</span>
- <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">0.01</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt"></div>
- <div class="output_png output_subarea ">
- <img src="
- "
- >
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h3 id="take-a-canvas-snapshot">take a canvas snapshot<a class="anchor-link" href="#take-a-canvas-snapshot">¶</a></h3>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [25]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">drawing_tool</span><span class="o">.</span><span class="n">mpl</span><span class="o">.</span><span class="n">gcf</span><span class="p">()</span><span class="o">.</span><span class="n">canvas</span><span class="o">.</span><span class="n">print_png</span><span class="p">(</span><span class="s2">"friction.png"</span><span class="p">)</span>
- <span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span>
- <span class="n">img</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s2">"friction.png"</span><span class="p">)</span>
- <span class="n">img</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt output_prompt">Out[25]:</div>
- <div class="output_png output_subarea output_execute_result">
- <img src="
- "
- >
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
- </div><div class="inner_cell">
- <div class="text_cell_render border-box-sizing rendered_html">
- <h2 id="sketch-composition">Sketch composition<a class="anchor-link" href="#Sketch-composition">¶</a></h2>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [26]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">myfig</span><span class="p">[</span><span class="s1">'friction'</span><span class="p">]</span><span class="o">.</span><span class="n">graphviz_dot</span><span class="p">(</span><span class="s1">'friction'</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt"></div>
- <div class="output_subarea output_stream output_stdout output_text">
- <pre>graphviz [('Composition:\\nfriction', 'Composition:\\nplan'), ('Composition:\\nplan', 'Composition:\\nbody'), ('Composition:\\nbody', 'Composition:\\nwheel'), ('Composition:\\nwheel', 'Rectangle:\\nouter'), ('Rectangle:\\nouter', 'Curve:\\nrectangle'), ('Composition:\\nbody', 'Force:\\nN'), ('Force:\\nN', 'Line:\\narrow'), ('Line:\\narrow', 'Curve:\\nline'), ('Force:\\nN', 'Text:\\ntext'), ('Composition:\\nbody', 'Text:\\nmc'), ('Composition:\\nplan', 'Wall:\\ninclined wall'), ('Wall:\\ninclined wall', 'Curve:\\nwall'), ('Composition:\\nplan', 'Line:\\nx start'), ('Line:\\nx start', 'Curve:\\nline'), ('Composition:\\nplan', 'Axis:\\nx axis'), ('Axis:\\nx axis', 'Arrow3:\\narrow'), ('Arrow3:\\narrow', 'Line:\\nline'), ('Line:\\nline', 'Curve:\\nline'), ('Arrow3:\\narrow', 'Line:\\nhead left'), ('Line:\\nhead left', 'Curve:\\nline'), ('Arrow3:\\narrow', 'Line:\\nhead right'), ('Line:\\nhead right', 'Curve:\\nline'), ('Axis:\\nx axis', 'Text:\\nlabel'), ('Composition:\\nplan', 'Text:\\nmA'), ('Composition:\\nplan', 'Text:\\nmB'), ('Composition:\\nfriction', 'Line:\\nground'), ('Line:\\nground', 'Curve:\\nline'), ('Composition:\\nfriction', 'Gravity:\\nmg'), ('Gravity:\\nmg', 'Line:\\narrow'), ('Line:\\narrow', 'Curve:\\nline'), ('Gravity:\\nmg', 'Text:\\ntext'), ('Composition:\\nfriction', 'Arc_wText:\\nangle'), ('Arc_wText:\\nangle', 'Arc:\\narc'), ('Arc:\\narc', 'Curve:\\narc'), ('Arc_wText:\\nangle', 'Text:\\ntext')] defaultdict(<function Shape.graphviz_dot.<locals>.<lambda> at 0x00000143A678E550>, {'Composition:\\nplan': 1, 'Composition:\\nfriction': 0, 'Composition:\\nbody': 1, 'Composition:\\nwheel': 1, 'Rectangle:\\nouter': 1, 'Curve:\\nrectangle': 1, 'Force:\\nN': 1, 'Line:\\narrow': 2, 'Curve:\\nline': 7, 'Text:\\ntext': 3, 'Text:\\nmc': 1, 'Wall:\\ninclined wall': 1, 'Curve:\\nwall': 1, 'Line:\\nx start': 1, 'Axis:\\nx axis': 1, 'Arrow3:\\narrow': 1, 'Line:\\nline': 1, 'Line:\\nhead left': 1, 'Line:\\nhead right': 1, 'Text:\\nlabel': 1, 'Text:\\nmA': 1, 'Text:\\nmB': 1, 'Line:\\nground': 1, 'Gravity:\\nmg': 1, 'Arc_wText:\\nangle': 1, 'Arc:\\narc': 1, 'Curve:\\narc': 1})
- [('Composition:\\nfriction', 'Composition:\\nplan'), ('Composition:\\nplan', 'Composition:\\nbody'), ('Composition:\\nbody', 'Composition:\\nwheel'), ('Composition:\\nwheel', 'Rectangle:\\nouter'), ('Rectangle:\\nouter', 'Curve:\\nrectangle'), ('Composition:\\nbody', 'Force:\\nN'), ('Force:\\nN', 'Line:\\narrow (1)'), ('Line:\\narrow (1)', 'Curve:\\nline (1)'), ('Force:\\nN', 'Text:\\ntext (1)'), ('Composition:\\nbody', 'Text:\\nmc'), ('Composition:\\nplan', 'Wall:\\ninclined wall'), ('Wall:\\ninclined wall', 'Curve:\\nwall'), ('Composition:\\nplan', 'Line:\\nx start'), ('Line:\\nx start', 'Curve:\\nline (2)'), ('Composition:\\nplan', 'Axis:\\nx axis'), ('Axis:\\nx axis', 'Arrow3:\\narrow'), ('Arrow3:\\narrow', 'Line:\\nline'), ('Line:\\nline', 'Curve:\\nline (3)'), ('Arrow3:\\narrow', 'Line:\\nhead left'), ('Line:\\nhead left', 'Curve:\\nline (4)'), ('Arrow3:\\narrow', 'Line:\\nhead right'), ('Line:\\nhead right', 'Curve:\\nline (5)'), ('Axis:\\nx axis', 'Text:\\nlabel'), ('Composition:\\nplan', 'Text:\\nmA'), ('Composition:\\nplan', 'Text:\\nmB'), ('Composition:\\nfriction', 'Line:\\nground'), ('Line:\\nground', 'Curve:\\nline (6)'), ('Composition:\\nfriction', 'Gravity:\\nmg'), ('Gravity:\\nmg', 'Line:\\narrow (2)'), ('Line:\\narrow (2)', 'Curve:\\nline (7)'), ('Gravity:\\nmg', 'Text:\\ntext (2)'), ('Composition:\\nfriction', 'Arc_wText:\\nangle'), ('Arc_wText:\\nangle', 'Arc:\\narc'), ('Arc:\\narc', 'Curve:\\narc'), ('Arc_wText:\\nangle', 'Text:\\ntext (3)')]
- Run dot -Tpng -o friction.png friction.dot
- </pre>
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [27]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="err">!</span><span class="n">dot</span> <span class="o">-</span><span class="n">Tpng</span> <span class="o">-</span><span class="n">o</span> <span class="n">dotfriction</span><span class="o">.</span><span class="n">png</span> <span class="n">friction</span><span class="o">.</span><span class="n">dot</span>
- <span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span>
- <span class="n">img</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s2">"dotfriction.png"</span><span class="p">)</span>
- <span class="n">img</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt output_prompt">Out[27]:</div>
- <div class="output_png output_subarea output_execute_result">
- <img src="
- "
- >
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [28]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="err">!</span><span class="n">dot</span> <span class="o">-</span><span class="n">Tsvg</span> <span class="o">-</span><span class="n">o</span> <span class="n">dotfriction</span><span class="o">.</span><span class="n">svg</span> <span class="n">friction</span><span class="o">.</span><span class="n">dot</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [29]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span><span class="n">display</span><span class="p">(</span><span class="n">SVG</span><span class="p">(</span><span class="s2">"dotfriction.svg"</span><span class="p">))</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="output_wrapper">
- <div class="output">
- <div class="output_area">
- <div class="prompt"></div>
- <div class="output_svg output_subarea ">
- <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="1247pt" height="510pt" viewBox="0.00 0.00 1246.65 510.44">
- <g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 506.441)">
- <title>G</title>
- <polygon fill="white" stroke="none" points="-4,4 -4,-506.441 1242.65,-506.441 1242.65,4 -4,4"/>
- <!-- Composition:\nfriction -->
- <g id="node1" class="node"><title>Composition:\nfriction</title>
- <ellipse fill="none" stroke="black" cx="867.054" cy="-475.571" rx="65.1077" ry="26.7407"/>
- <text text-anchor="middle" x="867.054" y="-479.371" font-family="Times New Roman,serif" font-size="14.00">Composition:</text>
- <text text-anchor="middle" x="867.054" y="-464.371" font-family="Times New Roman,serif" font-size="14.00">friction</text>
- </g>
- <!-- Composition:\nplan -->
- <g id="node2" class="node"><title>Composition:\nplan</title>
- <ellipse fill="none" stroke="black" cx="559.054" cy="-385.831" rx="65.1077" ry="26.7407"/>
- <text text-anchor="middle" x="559.054" y="-389.631" font-family="Times New Roman,serif" font-size="14.00">Composition:</text>
- <text text-anchor="middle" x="559.054" y="-374.631" font-family="Times New Roman,serif" font-size="14.00">plan</text>
- </g>
- <!-- Composition:\nfriction->Composition:\nplan -->
- <g id="edge1" class="edge"><title>Composition:\nfriction->Composition:\nplan</title>
- <path fill="none" stroke="black" d="M814.457,-459.587C761.051,-444.373 678.356,-420.816 621.619,-404.653"/>
- <polygon fill="black" stroke="black" points="622.268,-401.199 611.692,-401.825 620.35,-407.931 622.268,-401.199"/>
- </g>
- <!-- Line:\nground -->
- <g id="node27" class="node"><title>Line:\nground</title>
- <ellipse fill="none" stroke="black" cx="816.054" cy="-385.831" rx="39.6962" ry="26.7407"/>
- <text text-anchor="middle" x="816.054" y="-389.631" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="816.054" y="-374.631" font-family="Times New Roman,serif" font-size="14.00">ground</text>
- </g>
- <!-- Composition:\nfriction->Line:\nground -->
- <g id="edge26" class="edge"><title>Composition:\nfriction->Line:\nground</title>
- <path fill="none" stroke="black" d="M852.303,-449.193C847.041,-440.141 841.033,-429.804 835.441,-420.184"/>
- <polygon fill="black" stroke="black" points="838.297,-418.132 830.245,-411.246 832.245,-421.65 838.297,-418.132"/>
- </g>
- <!-- Gravity:\nmg -->
- <g id="node29" class="node"><title>Gravity:\nmg</title>
- <ellipse fill="none" stroke="black" cx="919.054" cy="-385.831" rx="43.2674" ry="26.7407"/>
- <text text-anchor="middle" x="919.054" y="-389.631" font-family="Times New Roman,serif" font-size="14.00">Gravity:</text>
- <text text-anchor="middle" x="919.054" y="-374.631" font-family="Times New Roman,serif" font-size="14.00">mg</text>
- </g>
- <!-- Composition:\nfriction->Gravity:\nmg -->
- <g id="edge28" class="edge"><title>Composition:\nfriction->Gravity:\nmg</title>
- <path fill="none" stroke="black" d="M882.094,-449.193C887.514,-440.048 893.712,-429.591 899.463,-419.887"/>
- <polygon fill="black" stroke="black" points="902.496,-421.633 904.584,-411.246 896.475,-418.064 902.496,-421.633"/>
- </g>
- <!-- Arc_wText:\nangle -->
- <g id="node33" class="node"><title>Arc_wText:\nangle</title>
- <ellipse fill="none" stroke="black" cx="1112.05" cy="-385.831" rx="58.8803" ry="26.7407"/>
- <text text-anchor="middle" x="1112.05" y="-389.631" font-family="Times New Roman,serif" font-size="14.00">Arc_wText:</text>
- <text text-anchor="middle" x="1112.05" y="-374.631" font-family="Times New Roman,serif" font-size="14.00">angle</text>
- </g>
- <!-- Composition:\nfriction->Arc_wText:\nangle -->
- <g id="edge32" class="edge"><title>Composition:\nfriction->Arc_wText:\nangle</title>
- <path fill="none" stroke="black" d="M915.166,-457.341C955.891,-442.756 1014.27,-421.85 1056.88,-406.589"/>
- <polygon fill="black" stroke="black" points="1058.3,-409.798 1066.54,-403.132 1055.94,-403.208 1058.3,-409.798"/>
- </g>
- <!-- Composition:\nbody -->
- <g id="node3" class="node"><title>Composition:\nbody</title>
- <ellipse fill="none" stroke="black" cx="199.054" cy="-296.09" rx="65.1077" ry="26.7407"/>
- <text text-anchor="middle" x="199.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Composition:</text>
- <text text-anchor="middle" x="199.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">body</text>
- </g>
- <!-- Composition:\nplan->Composition:\nbody -->
- <g id="edge2" class="edge"><title>Composition:\nplan->Composition:\nbody</title>
- <path fill="none" stroke="black" d="M501.756,-372.883C446.538,-361.113 360.749,-342.154 287.054,-322.96 278.34,-320.691 269.182,-318.162 260.201,-315.598"/>
- <polygon fill="black" stroke="black" points="261.134,-312.225 250.555,-312.814 259.192,-318.95 261.134,-312.225"/>
- </g>
- <!-- Wall:\ninclined wall -->
- <g id="node12" class="node"><title>Wall:\ninclined wall</title>
- <ellipse fill="none" stroke="black" cx="356.054" cy="-296.09" rx="60.2083" ry="26.7407"/>
- <text text-anchor="middle" x="356.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Wall:</text>
- <text text-anchor="middle" x="356.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">inclined wall</text>
- </g>
- <!-- Composition:\nplan->Wall:\ninclined wall -->
- <g id="edge11" class="edge"><title>Composition:\nplan->Wall:\ninclined wall</title>
- <path fill="none" stroke="black" d="M515.006,-365.792C483.484,-352.168 440.94,-333.78 407.799,-319.456"/>
- <polygon fill="black" stroke="black" points="408.847,-316.096 398.279,-315.341 406.07,-322.521 408.847,-316.096"/>
- </g>
- <!-- Line:\nx start -->
- <g id="node14" class="node"><title>Line:\nx start</title>
- <ellipse fill="none" stroke="black" cx="470.054" cy="-296.09" rx="36.125" ry="26.7407"/>
- <text text-anchor="middle" x="470.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="470.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">x start</text>
- </g>
- <!-- Composition:\nplan->Line:\nx start -->
- <g id="edge13" class="edge"><title>Composition:\nplan->Line:\nx start</title>
- <path fill="none" stroke="black" d="M534.734,-360.855C523.588,-349.867 510.299,-336.766 498.675,-325.306"/>
- <polygon fill="black" stroke="black" points="500.893,-322.579 491.315,-318.051 495.979,-327.564 500.893,-322.579"/>
- </g>
- <!-- Axis:\nx axis -->
- <g id="node16" class="node"><title>Axis:\nx axis</title>
- <ellipse fill="none" stroke="black" cx="559.054" cy="-296.09" rx="34.7971" ry="26.7407"/>
- <text text-anchor="middle" x="559.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Axis:</text>
- <text text-anchor="middle" x="559.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">x axis</text>
- </g>
- <!-- Composition:\nplan->Axis:\nx axis -->
- <g id="edge15" class="edge"><title>Composition:\nplan->Axis:\nx axis</title>
- <path fill="none" stroke="black" d="M559.054,-358.506C559.054,-350.539 559.054,-341.648 559.054,-333.159"/>
- <polygon fill="black" stroke="black" points="562.554,-333.094 559.054,-323.094 555.554,-333.094 562.554,-333.094"/>
- </g>
- <!-- Text:\nmA -->
- <g id="node25" class="node"><title>Text:\nmA</title>
- <ellipse fill="none" stroke="black" cx="643.054" cy="-296.09" rx="31.6406" ry="26.7407"/>
- <text text-anchor="middle" x="643.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="643.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">mA</text>
- </g>
- <!-- Composition:\nplan->Text:\nmA -->
- <g id="edge24" class="edge"><title>Composition:\nplan->Text:\nmA</title>
- <path fill="none" stroke="black" d="M582.453,-360.39C593.045,-349.326 605.616,-336.195 616.555,-324.769"/>
- <polygon fill="black" stroke="black" points="619.083,-327.189 623.471,-317.546 614.027,-322.349 619.083,-327.189"/>
- </g>
- <!-- Text:\nmB -->
- <g id="node26" class="node"><title>Text:\nmB</title>
- <ellipse fill="none" stroke="black" cx="725.054" cy="-296.09" rx="31.6406" ry="26.7407"/>
- <text text-anchor="middle" x="725.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="725.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">mB</text>
- </g>
- <!-- Composition:\nplan->Text:\nmB -->
- <g id="edge25" class="edge"><title>Composition:\nplan->Text:\nmB</title>
- <path fill="none" stroke="black" d="M601.281,-365.269C625.773,-353.592 657.023,-338.125 684.054,-322.96 686.531,-321.571 689.068,-320.098 691.605,-318.588"/>
- <polygon fill="black" stroke="black" points="693.434,-321.572 700.15,-313.377 689.79,-315.595 693.434,-321.572"/>
- </g>
- <!-- Composition:\nwheel -->
- <g id="node4" class="node"><title>Composition:\nwheel</title>
- <ellipse fill="none" stroke="black" cx="65.0538" cy="-206.35" rx="65.1077" ry="26.7407"/>
- <text text-anchor="middle" x="65.0538" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Composition:</text>
- <text text-anchor="middle" x="65.0538" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">wheel</text>
- </g>
- <!-- Composition:\nbody->Composition:\nwheel -->
- <g id="edge3" class="edge"><title>Composition:\nbody->Composition:\nwheel</title>
- <path fill="none" stroke="black" d="M165.24,-272.95C147.704,-261.468 126.11,-247.328 107.465,-235.12"/>
- <polygon fill="black" stroke="black" points="109.14,-232.034 98.8569,-229.484 105.306,-237.89 109.14,-232.034"/>
- </g>
- <!-- Force:\nN -->
- <g id="node7" class="node"><title>Force:\nN</title>
- <ellipse fill="none" stroke="black" cx="186.054" cy="-206.35" rx="37.4533" ry="26.7407"/>
- <text text-anchor="middle" x="186.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Force:</text>
- <text text-anchor="middle" x="186.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">N</text>
- </g>
- <!-- Composition:\nbody->Force:\nN -->
- <g id="edge6" class="edge"><title>Composition:\nbody->Force:\nN</title>
- <path fill="none" stroke="black" d="M195.224,-269.24C194.018,-261.102 192.664,-251.962 191.374,-243.255"/>
- <polygon fill="black" stroke="black" points="194.829,-242.698 189.901,-233.319 187.905,-243.724 194.829,-242.698"/>
- </g>
- <!-- Text:\nmc -->
- <g id="node11" class="node"><title>Text:\nmc</title>
- <ellipse fill="none" stroke="black" cx="273.054" cy="-206.35" rx="31.6406" ry="26.7407"/>
- <text text-anchor="middle" x="273.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="273.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">mc</text>
- </g>
- <!-- Composition:\nbody->Text:\nmc -->
- <g id="edge10" class="edge"><title>Composition:\nbody->Text:\nmc</title>
- <path fill="none" stroke="black" d="M220.061,-270.182C228.932,-259.664 239.322,-247.345 248.541,-236.415"/>
- <polygon fill="black" stroke="black" points="251.236,-238.648 255.008,-228.747 245.885,-234.135 251.236,-238.648"/>
- </g>
- <!-- Rectangle:\nouter -->
- <g id="node5" class="node"><title>Rectangle:\nouter</title>
- <ellipse fill="none" stroke="black" cx="65.0538" cy="-116.61" rx="52.1524" ry="26.7407"/>
- <text text-anchor="middle" x="65.0538" y="-120.41" font-family="Times New Roman,serif" font-size="14.00">Rectangle:</text>
- <text text-anchor="middle" x="65.0538" y="-105.41" font-family="Times New Roman,serif" font-size="14.00">outer</text>
- </g>
- <!-- Composition:\nwheel->Rectangle:\nouter -->
- <g id="edge4" class="edge"><title>Composition:\nwheel->Rectangle:\nouter</title>
- <path fill="none" stroke="black" d="M65.0538,-179.025C65.0538,-171.059 65.0538,-162.168 65.0538,-153.679"/>
- <polygon fill="black" stroke="black" points="68.5539,-153.614 65.0538,-143.614 61.5539,-153.614 68.5539,-153.614"/>
- </g>
- <!-- Curve:\nrectangle -->
- <g id="node6" class="node"><title>Curve:\nrectangle</title>
- <ellipse fill="none" stroke="black" cx="65.0538" cy="-26.8701" rx="46.8387" ry="26.7407"/>
- <text text-anchor="middle" x="65.0538" y="-30.6701" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="65.0538" y="-15.6701" font-family="Times New Roman,serif" font-size="14.00">rectangle</text>
- </g>
- <!-- Rectangle:\nouter->Curve:\nrectangle -->
- <g id="edge5" class="edge"><title>Rectangle:\nouter->Curve:\nrectangle</title>
- <path fill="none" stroke="black" d="M65.0538,-89.2852C65.0538,-81.3185 65.0538,-72.4275 65.0538,-63.9391"/>
- <polygon fill="black" stroke="black" points="68.5539,-63.874 65.0538,-53.874 61.5539,-63.8741 68.5539,-63.874"/>
- </g>
- <!-- Line:\narrow (1) -->
- <g id="node8" class="node"><title>Line:\narrow (1)</title>
- <ellipse fill="none" stroke="black" cx="185.054" cy="-116.61" rx="48.1667" ry="26.7407"/>
- <text text-anchor="middle" x="185.054" y="-120.41" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="185.054" y="-105.41" font-family="Times New Roman,serif" font-size="14.00">arrow (1)</text>
- </g>
- <!-- Force:\nN->Line:\narrow (1) -->
- <g id="edge7" class="edge"><title>Force:\nN->Line:\narrow (1)</title>
- <path fill="none" stroke="black" d="M185.754,-179.025C185.663,-171.059 185.562,-162.168 185.465,-153.679"/>
- <polygon fill="black" stroke="black" points="188.964,-153.574 185.35,-143.614 181.964,-153.653 188.964,-153.574"/>
- </g>
- <!-- Text:\ntext (1) -->
- <g id="node10" class="node"><title>Text:\ntext (1)</title>
- <ellipse fill="none" stroke="black" cx="291.054" cy="-116.61" rx="39.6962" ry="26.7407"/>
- <text text-anchor="middle" x="291.054" y="-120.41" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="291.054" y="-105.41" font-family="Times New Roman,serif" font-size="14.00">text (1)</text>
- </g>
- <!-- Force:\nN->Text:\ntext (1) -->
- <g id="edge9" class="edge"><title>Force:\nN->Text:\ntext (1)</title>
- <path fill="none" stroke="black" d="M209.88,-185.441C224.307,-173.385 242.901,-157.847 258.653,-144.685"/>
- <polygon fill="black" stroke="black" points="261.164,-147.148 266.593,-138.05 256.675,-141.776 261.164,-147.148"/>
- </g>
- <!-- Curve:\nline (1) -->
- <g id="node9" class="node"><title>Curve:\nline (1)</title>
- <ellipse fill="none" stroke="black" cx="185.054" cy="-26.8701" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="185.054" y="-30.6701" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="185.054" y="-15.6701" font-family="Times New Roman,serif" font-size="14.00">line (1)</text>
- </g>
- <!-- Line:\narrow (1)->Curve:\nline (1) -->
- <g id="edge8" class="edge"><title>Line:\narrow (1)->Curve:\nline (1)</title>
- <path fill="none" stroke="black" d="M185.054,-89.2852C185.054,-81.3185 185.054,-72.4275 185.054,-63.9391"/>
- <polygon fill="black" stroke="black" points="188.554,-63.874 185.054,-53.874 181.554,-63.8741 188.554,-63.874"/>
- </g>
- <!-- Curve:\nwall -->
- <g id="node13" class="node"><title>Curve:\nwall</title>
- <ellipse fill="none" stroke="black" cx="360.054" cy="-206.35" rx="37.4533" ry="26.7407"/>
- <text text-anchor="middle" x="360.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="360.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">wall</text>
- </g>
- <!-- Wall:\ninclined wall->Curve:\nwall -->
- <g id="edge12" class="edge"><title>Wall:\ninclined wall->Curve:\nwall</title>
- <path fill="none" stroke="black" d="M357.254,-268.765C357.617,-260.799 358.022,-251.908 358.409,-243.419"/>
- <polygon fill="black" stroke="black" points="361.909,-243.503 358.868,-233.354 354.916,-243.184 361.909,-243.503"/>
- </g>
- <!-- Curve:\nline (2) -->
- <g id="node15" class="node"><title>Curve:\nline (2)</title>
- <ellipse fill="none" stroke="black" cx="458.054" cy="-206.35" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="458.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="458.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">line (2)</text>
- </g>
- <!-- Line:\nx start->Curve:\nline (2) -->
- <g id="edge14" class="edge"><title>Line:\nx start->Curve:\nline (2)</title>
- <path fill="none" stroke="black" d="M466.518,-269.24C465.405,-261.102 464.155,-251.962 462.964,-243.255"/>
- <polygon fill="black" stroke="black" points="466.428,-242.753 461.606,-233.319 459.493,-243.701 466.428,-242.753"/>
- </g>
- <!-- Arrow3:\narrow -->
- <g id="node17" class="node"><title>Arrow3:\narrow</title>
- <ellipse fill="none" stroke="black" cx="559.054" cy="-206.35" rx="43.6818" ry="26.7407"/>
- <text text-anchor="middle" x="559.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Arrow3:</text>
- <text text-anchor="middle" x="559.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">arrow</text>
- </g>
- <!-- Axis:\nx axis->Arrow3:\narrow -->
- <g id="edge16" class="edge"><title>Axis:\nx axis->Arrow3:\narrow</title>
- <path fill="none" stroke="black" d="M559.054,-268.765C559.054,-260.799 559.054,-251.908 559.054,-243.419"/>
- <polygon fill="black" stroke="black" points="562.554,-243.354 559.054,-233.354 555.554,-243.354 562.554,-243.354"/>
- </g>
- <!-- Text:\nlabel -->
- <g id="node24" class="node"><title>Text:\nlabel</title>
- <ellipse fill="none" stroke="black" cx="653.054" cy="-206.35" rx="31.6406" ry="26.7407"/>
- <text text-anchor="middle" x="653.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="653.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">label</text>
- </g>
- <!-- Axis:\nx axis->Text:\nlabel -->
- <g id="edge23" class="edge"><title>Axis:\nx axis->Text:\nlabel</title>
- <path fill="none" stroke="black" d="M580.856,-274.741C593.852,-262.61 610.497,-247.073 624.53,-233.975"/>
- <polygon fill="black" stroke="black" points="627.095,-236.368 632.017,-226.986 622.318,-231.251 627.095,-236.368"/>
- </g>
- <!-- Line:\nline -->
- <g id="node18" class="node"><title>Line:\nline</title>
- <ellipse fill="none" stroke="black" cx="464.054" cy="-116.61" rx="31.2258" ry="26.7407"/>
- <text text-anchor="middle" x="464.054" y="-120.41" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="464.054" y="-105.41" font-family="Times New Roman,serif" font-size="14.00">line</text>
- </g>
- <!-- Arrow3:\narrow->Line:\nline -->
- <g id="edge17" class="edge"><title>Arrow3:\narrow->Line:\nline</title>
- <path fill="none" stroke="black" d="M535.081,-183.21C522.124,-171.242 506.041,-156.389 492.458,-143.844"/>
- <polygon fill="black" stroke="black" points="494.513,-140.977 484.792,-136.763 489.763,-146.119 494.513,-140.977"/>
- </g>
- <!-- Line:\nhead left -->
- <g id="node20" class="node"><title>Line:\nhead left</title>
- <ellipse fill="none" stroke="black" cx="559.054" cy="-116.61" rx="45.011" ry="26.7407"/>
- <text text-anchor="middle" x="559.054" y="-120.41" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="559.054" y="-105.41" font-family="Times New Roman,serif" font-size="14.00">head left</text>
- </g>
- <!-- Arrow3:\narrow->Line:\nhead left -->
- <g id="edge19" class="edge"><title>Arrow3:\narrow->Line:\nhead left</title>
- <path fill="none" stroke="black" d="M559.054,-179.025C559.054,-171.059 559.054,-162.168 559.054,-153.679"/>
- <polygon fill="black" stroke="black" points="562.554,-153.614 559.054,-143.614 555.554,-153.614 562.554,-153.614"/>
- </g>
- <!-- Line:\nhead right -->
- <g id="node22" class="node"><title>Line:\nhead right</title>
- <ellipse fill="none" stroke="black" cx="672.054" cy="-116.61" rx="50.41" ry="26.7407"/>
- <text text-anchor="middle" x="672.054" y="-120.41" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="672.054" y="-105.41" font-family="Times New Roman,serif" font-size="14.00">head right</text>
- </g>
- <!-- Arrow3:\narrow->Line:\nhead right -->
- <g id="edge21" class="edge"><title>Arrow3:\narrow->Line:\nhead right</title>
- <path fill="none" stroke="black" d="M585.547,-184.779C600.546,-173.133 619.519,-158.402 635.872,-145.704"/>
- <polygon fill="black" stroke="black" points="638.398,-148.174 644.15,-139.277 634.104,-142.645 638.398,-148.174"/>
- </g>
- <!-- Curve:\nline (3) -->
- <g id="node19" class="node"><title>Curve:\nline (3)</title>
- <ellipse fill="none" stroke="black" cx="463.054" cy="-26.8701" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="463.054" y="-30.6701" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="463.054" y="-15.6701" font-family="Times New Roman,serif" font-size="14.00">line (3)</text>
- </g>
- <!-- Line:\nline->Curve:\nline (3) -->
- <g id="edge18" class="edge"><title>Line:\nline->Curve:\nline (3)</title>
- <path fill="none" stroke="black" d="M463.754,-89.2852C463.663,-81.3185 463.562,-72.4275 463.465,-63.9391"/>
- <polygon fill="black" stroke="black" points="466.964,-63.8335 463.35,-53.874 459.964,-63.9133 466.964,-63.8335"/>
- </g>
- <!-- Curve:\nline (4) -->
- <g id="node21" class="node"><title>Curve:\nline (4)</title>
- <ellipse fill="none" stroke="black" cx="559.054" cy="-26.8701" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="559.054" y="-30.6701" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="559.054" y="-15.6701" font-family="Times New Roman,serif" font-size="14.00">line (4)</text>
- </g>
- <!-- Line:\nhead left->Curve:\nline (4) -->
- <g id="edge20" class="edge"><title>Line:\nhead left->Curve:\nline (4)</title>
- <path fill="none" stroke="black" d="M559.054,-89.2852C559.054,-81.3185 559.054,-72.4275 559.054,-63.9391"/>
- <polygon fill="black" stroke="black" points="562.554,-63.874 559.054,-53.874 555.554,-63.8741 562.554,-63.874"/>
- </g>
- <!-- Curve:\nline (5) -->
- <g id="node23" class="node"><title>Curve:\nline (5)</title>
- <ellipse fill="none" stroke="black" cx="672.054" cy="-26.8701" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="672.054" y="-30.6701" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="672.054" y="-15.6701" font-family="Times New Roman,serif" font-size="14.00">line (5)</text>
- </g>
- <!-- Line:\nhead right->Curve:\nline (5) -->
- <g id="edge22" class="edge"><title>Line:\nhead right->Curve:\nline (5)</title>
- <path fill="none" stroke="black" d="M672.054,-89.2852C672.054,-81.3185 672.054,-72.4275 672.054,-63.9391"/>
- <polygon fill="black" stroke="black" points="675.554,-63.874 672.054,-53.874 668.554,-63.8741 675.554,-63.874"/>
- </g>
- <!-- Curve:\nline (6) -->
- <g id="node28" class="node"><title>Curve:\nline (6)</title>
- <ellipse fill="none" stroke="black" cx="814.054" cy="-296.09" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="814.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="814.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">line (6)</text>
- </g>
- <!-- Line:\nground->Curve:\nline (6) -->
- <g id="edge27" class="edge"><title>Line:\nground->Curve:\nline (6)</title>
- <path fill="none" stroke="black" d="M815.454,-358.506C815.272,-350.539 815.069,-341.648 814.876,-333.159"/>
- <polygon fill="black" stroke="black" points="818.374,-333.012 814.647,-323.094 811.375,-333.172 818.374,-333.012"/>
- </g>
- <!-- Line:\narrow (2) -->
- <g id="node30" class="node"><title>Line:\narrow (2)</title>
- <ellipse fill="none" stroke="black" cx="919.054" cy="-296.09" rx="48.1667" ry="26.7407"/>
- <text text-anchor="middle" x="919.054" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Line:</text>
- <text text-anchor="middle" x="919.054" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">arrow (2)</text>
- </g>
- <!-- Gravity:\nmg->Line:\narrow (2) -->
- <g id="edge29" class="edge"><title>Gravity:\nmg->Line:\narrow (2)</title>
- <path fill="none" stroke="black" d="M919.054,-358.506C919.054,-350.539 919.054,-341.648 919.054,-333.159"/>
- <polygon fill="black" stroke="black" points="922.554,-333.094 919.054,-323.094 915.554,-333.094 922.554,-333.094"/>
- </g>
- <!-- Text:\ntext (2) -->
- <g id="node32" class="node"><title>Text:\ntext (2)</title>
- <ellipse fill="none" stroke="black" cx="1025.05" cy="-296.09" rx="39.6962" ry="26.7407"/>
- <text text-anchor="middle" x="1025.05" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="1025.05" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">text (2)</text>
- </g>
- <!-- Gravity:\nmg->Text:\ntext (2) -->
- <g id="edge31" class="edge"><title>Gravity:\nmg->Text:\ntext (2)</title>
- <path fill="none" stroke="black" d="M944.443,-363.815C958.943,-351.813 977.268,-336.645 992.78,-323.804"/>
- <polygon fill="black" stroke="black" points="995.129,-326.403 1000.6,-317.331 990.666,-321.011 995.129,-326.403"/>
- </g>
- <!-- Curve:\nline (7) -->
- <g id="node31" class="node"><title>Curve:\nline (7)</title>
- <ellipse fill="none" stroke="black" cx="919.054" cy="-206.35" rx="38.7821" ry="26.7407"/>
- <text text-anchor="middle" x="919.054" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="919.054" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">line (7)</text>
- </g>
- <!-- Line:\narrow (2)->Curve:\nline (7) -->
- <g id="edge30" class="edge"><title>Line:\narrow (2)->Curve:\nline (7)</title>
- <path fill="none" stroke="black" d="M919.054,-268.765C919.054,-260.799 919.054,-251.908 919.054,-243.419"/>
- <polygon fill="black" stroke="black" points="922.554,-243.354 919.054,-233.354 915.554,-243.354 922.554,-243.354"/>
- </g>
- <!-- Arc:\narc -->
- <g id="node34" class="node"><title>Arc:\narc</title>
- <ellipse fill="none" stroke="black" cx="1112.05" cy="-296.09" rx="28.9828" ry="26.7407"/>
- <text text-anchor="middle" x="1112.05" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Arc:</text>
- <text text-anchor="middle" x="1112.05" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">arc</text>
- </g>
- <!-- Arc_wText:\nangle->Arc:\narc -->
- <g id="edge33" class="edge"><title>Arc_wText:\nangle->Arc:\narc</title>
- <path fill="none" stroke="black" d="M1112.05,-358.506C1112.05,-350.539 1112.05,-341.648 1112.05,-333.159"/>
- <polygon fill="black" stroke="black" points="1115.55,-333.094 1112.05,-323.094 1108.55,-333.094 1115.55,-333.094"/>
- </g>
- <!-- Text:\ntext (3) -->
- <g id="node36" class="node"><title>Text:\ntext (3)</title>
- <ellipse fill="none" stroke="black" cx="1199.05" cy="-296.09" rx="39.6962" ry="26.7407"/>
- <text text-anchor="middle" x="1199.05" y="-299.89" font-family="Times New Roman,serif" font-size="14.00">Text:</text>
- <text text-anchor="middle" x="1199.05" y="-284.89" font-family="Times New Roman,serif" font-size="14.00">text (3)</text>
- </g>
- <!-- Arc_wText:\nangle->Text:\ntext (3) -->
- <g id="edge35" class="edge"><title>Arc_wText:\nangle->Text:\ntext (3)</title>
- <path fill="none" stroke="black" d="M1135.83,-360.855C1146.47,-350.117 1159.12,-337.361 1170.3,-326.09"/>
- <polygon fill="black" stroke="black" points="1172.84,-328.499 1177.39,-318.934 1167.87,-323.571 1172.84,-328.499"/>
- </g>
- <!-- Curve:\narc -->
- <g id="node35" class="node"><title>Curve:\narc</title>
- <ellipse fill="none" stroke="black" cx="1112.05" cy="-206.35" rx="37.4533" ry="26.7407"/>
- <text text-anchor="middle" x="1112.05" y="-210.15" font-family="Times New Roman,serif" font-size="14.00">Curve:</text>
- <text text-anchor="middle" x="1112.05" y="-195.15" font-family="Times New Roman,serif" font-size="14.00">arc</text>
- </g>
- <!-- Arc:\narc->Curve:\narc -->
- <g id="edge34" class="edge"><title>Arc:\narc->Curve:\narc</title>
- <path fill="none" stroke="black" d="M1112.05,-268.765C1112.05,-260.799 1112.05,-251.908 1112.05,-243.419"/>
- <polygon fill="black" stroke="black" points="1115.55,-243.354 1112.05,-233.354 1108.55,-243.354 1115.55,-243.354"/>
- </g>
- </g>
- </svg>
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="cell border-box-sizing code_cell rendered">
- <div class="input">
- <div class="prompt input_prompt">In [ ]:</div>
- <div class="inner_cell">
-
-
- <div class="input_area">
- <div class=" highlight highlight-ipynb hl-python"><pre><span></span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
-
- </div>
-
-
-
-
-
- </article>
- </div>
- </div>
- </main>
-
-
- <footer class="md-footer">
-
- <div class="md-footer-meta md-typeset">
- <div class="md-footer-meta__inner md-grid">
- <div class="md-footer-copyright">
-
- Made with
- <a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
- Material for MkDocs
- </a>
- </div>
-
- </div>
- </div>
- </footer>
-
- </div>
-
- <script src="../../assets/javascripts/vendor.c3dc8c49.min.js"></script>
- <script src="../../assets/javascripts/bundle.f9edbbd5.min.js"></script><script id="__lang" type="application/json">{"clipboard.copy": "Copy to clipboard", "clipboard.copied": "Copied to clipboard", "search.config.lang": "en", "search.config.pipeline": "trimmer, stopWordFilter", "search.config.separator": "[\\s\\-]+", "search.result.placeholder": "Type to start searching", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents"}</script>
-
- <script>
- app = initialize({
- base: "../..",
- features: [],
- search: Object.assign({
- worker: "../../assets/javascripts/worker/search.8e2cddea.min.js"
- }, typeof search !== "undefined" && search)
- })
- </script>
-
- <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-MML-AM_CHTML"></script>
-
-
- </body>
- </html>
|