| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037 |
- from numpy import linspace, sin, cos, pi, array, asarray, ndarray, sqrt, abs
- import pprint, copy, glob, os
- from MatplotlibDraw import MatplotlibDraw
- drawing_tool = MatplotlibDraw()
- def point(x, y):
- return array((x, y), dtype=float)
- def animate(fig, time_points, user_action, moviefiles=False,
- pause_per_frame=0.5):
- if moviefiles:
- # Clean up old frame files
- framefilestem = 'tmp_frame_'
- framefiles = glob.glob('%s*.png' % framefilestem)
- for framefile in framefiles:
- os.remove(framefile)
- for n, t in enumerate(time_points):
- drawing_tool.erase()
- user_action(t, fig)
- #could demand returning fig, but in-place modifications
- #are done anyway
- #fig = user_action(t, fig)
- #if fig is None:
- # raise TypeError(
- # 'animate: user_action returns None, not fig\n'
- # '(a Shape object with the whole figure)')
- fig.draw()
- drawing_tool.display()
- if moviefiles:
- drawing_tool.savefig('%s%04d.png' % (framefilestem, n))
- if moviefiles:
- return '%s*.png' % framefilestem
- class Shape:
- """
- Superclass for drawing different geometric shapes.
- Subclasses define shapes, but drawing, rotation, translation,
- etc. are done in generic functions in this superclass.
- """
- def __init__(self):
- """
- Until new version of shapes.py is ready:
- Never to be called from subclasses.
- """
- raise NotImplementedError(
- 'class %s must implement __init__,\nwhich defines '
- 'self.shapes as a list of Shape objects\n'
- '(and preferably self._repr string).\n'
- 'Do not call Shape.__init__!' % \
- self.__class__.__name__)
- def __iter__(self):
- # We iterate over self.shapes many places, and will
- # get here if self.shapes is just a Shape object and
- # not the assumed list.
- print 'Warning: class %s does not define self.shapes\n'\
- 'as a *list* of Shape objects'
- return [self] # Make the iteration work
- def copy(self):
- return copy.deepcopy(self)
- def __getitem__(self, name):
- """
- Allow indexing like::
- obj1['name1']['name2']
- all the way down to ``Curve`` or ``Point`` (``Text``)
- objects.
- """
- if hasattr(self, 'shapes'):
- if name in self.shapes:
- return self.shapes[name]
- else:
- for shape in self.shapes:
- if isinstance(self.shapes[shape], (Curve,Point)):
- # Indexing of Curve/Point/Text is not possible
- raise TypeError(
- 'Index "%s" is illegal' % name)
- return self.shapes[shape][name]
- else:
- raise Exception('This is a bug')
- def for_all_shapes(self, func, *args, **kwargs):
- if not hasattr(self, 'shapes'):
- # When self.shapes is lacking, we either come to
- # a special implementation of func or we come here
- # because Shape.func is just inherited. This is
- # an error if the class is not Curve or Point
- if isinstance(self, (Curve, Point)):
- return # ok: no shapes and no func
- else:
- raise AttributeError('class %s has no shapes attribute!' %
- self.__class__.__name__)
- is_dict = True if isinstance(self.shapes, dict) else False
- for shape in self.shapes:
- if is_dict:
- shape = self.shapes[shape]
- if not isinstance(shape, Shape):
- if isinstance(shape, (dict,list,tuple)):
- raise TypeError(
- 'class %s has a shapes attribute containing '
- 'dict/list/tuple objects (nested shapes),\n'
- 'which is not allowed - all object must be '
- 'derived from Shape and the shapes dict/list\n'
- 'cannot be nested.' % self.__class__.__name__)
- else:
- raise TypeError(
- 'class %s has a shapes attribute where not all '
- 'values are Shape objects:\n%s' %
- (self.__class__.__name__, pprint.pformat(self.shapes)))
- getattr(shape, func)(*args, **kwargs)
- def draw(self):
- self.for_all_shapes('draw')
- def rotate(self, angle, center=point(0,0)):
- self.for_all_shapes('rotate', angle, center)
- def translate(self, vec):
- self.for_all_shapes('translate', vec)
- def scale(self, factor):
- self.for_all_shapes('scale', factor)
- def set_linestyle(self, style):
- self.for_all_shapes('set_linestyle', style)
- def set_linewidth(self, width):
- self.for_all_shapes('set_linewidth', width)
- def set_linecolor(self, color):
- self.for_all_shapes('set_linecolor', color)
- def set_arrow(self, style):
- self.for_all_shapes('set_arrow', style)
- def set_filled_curves(self, color='', pattern=''):
- self.for_all_shapes('set_filled_curves', color, pattern)
- def show_hierarchy(self, indent=0, format='std'):
- """Recursive pretty print of hierarchy of objects."""
- if not isinstance(self.shapes, dict):
- print 'cannot print hierarchy when %s.shapes is not a dict' % \
- self.__class__.__name__
- s = ''
- if format == 'dict':
- s += '{'
- for shape in self.shapes:
- if format == 'dict':
- shape_str = repr(shape) + ':'
- elif format == 'plain':
- shape_str = shape
- else:
- shape_str = shape + ':'
- if format == 'dict' or format == 'plain':
- class_str = ''
- else:
- class_str = ' (%s)' % \
- self.shapes[shape].__class__.__name__
- s += '\n%s%s%s %s' % (
- ' '*indent,
- shape_str,
- class_str,
- self.shapes[shape].show_hierarchy(indent+4, format))
- if format == 'dict':
- s += '}'
- return s
- def __str__(self):
- """Display hierarchy with minimum information (just object names)."""
- return self.show_hierarchy(format='plain')
- def __repr__(self):
- """Display hierarchy as a dictionary."""
- return self.show_hierarchy(format='dict')
- #return pprint.pformat(self.shapes)
- class Curve(Shape):
- """General curve as a sequence of (x,y) coordintes."""
- def __init__(self, x, y):
- """
- `x`, `y`: arrays holding the coordinates of the curve.
- """
- self.x, self.y = x, y
- # Turn to numpy arrays
- self.x = asarray(self.x, dtype=float)
- self.y = asarray(self.y, dtype=float)
- #self.shapes must not be defined in this class
- #as self.shapes holds children objects:
- #Curve has no children (end leaf of self.shapes tree)
- self.linestyle = None
- self.linewidth = None
- self.linecolor = None
- self.fillcolor = None
- self.fillpattern = None
- self.arrow = None
- def inside_plot_area(self, verbose=True):
- """Check that all coordinates are within drawing_tool's area."""
- xmin, xmax = self.x.min(), self.x.max()
- ymin, ymax = self.y.min(), self.y.max()
- t = drawing_tool
- inside = True
- if xmin < t.xmin:
- inside = False
- if verbose:
- print 'x_min=%g < plot area x_min=%g' % (xmin, t.xmin)
- if xmax > t.xmax:
- inside = False
- if verbose:
- print 'x_max=%g > plot area x_max=%g' % (xmax, t.xmax)
- if ymin < t.ymin:
- inside = False
- if verbose:
- print 'y_min=%g < plot area y_min=%g' % (ymin, t.ymin)
- if xmax > t.xmax:
- inside = False
- if verbose:
- print 'y_max=%g > plot area y_max=%g' % (ymax, t.ymax)
- return inside
- def draw(self):
- """
- Send the curve to the plotting engine. That is, convert
- coordinate information in self.x and self.y, together
- with optional settings of linestyles, etc., to
- plotting commands for the chosen engine.
- """
- self.inside_plot_area()
- drawing_tool.define_curve(
- self.x, self.y,
- self.linestyle, self.linewidth, self.linecolor,
- self.arrow, self.fillcolor, self.fillpattern)
- def rotate(self, angle, center=point(0,0)):
- """
- Rotate all coordinates: `angle` is measured in degrees and
- (`x`,`y`) is the "origin" of the rotation.
- """
- angle = angle*pi/180
- x, y = center
- c = cos(angle); s = sin(angle)
- xnew = x + (self.x - x)*c - (self.y - y)*s
- ynew = y + (self.x - x)*s + (self.y - y)*c
- self.x = xnew
- self.y = ynew
- def scale(self, factor):
- """Scale all coordinates by `factor`: ``x = factor*x``, etc."""
- self.x = factor*self.x
- self.y = factor*self.y
- def translate(self, vec):
- """Translate all coordinates by a vector `vec`."""
- self.x += vec[0]
- self.y += vec[1]
- def set_linecolor(self, color):
- self.linecolor = color
- def set_linewidth(self, width):
- self.linewidth = width
- def set_linestyle(self, style):
- self.linestyle = style
- def set_arrow(self, style=None):
- styles = ('->', '<-', '<->')
- if not style in styles:
- raise ValueError('style=%s must be in %s' % (style, styles))
- self.arrow = style
- def set_name(self, name):
- self.name = name
- def set_filled_curves(self, color='', pattern=''):
- self.fillcolor = color
- self.fillpattern = pattern
- def show_hierarchy(self, indent=0, format='std'):
- if format == 'dict':
- return '"%s"' % str(self)
- elif format == 'plain':
- return ''
- else:
- return str(self)
- def __str__(self):
- """Compact pretty print of a Curve object."""
- s = '%d coords' % self.x.size
- if not self.inside_plot_area(verbose=False):
- s += ', some coordinates are outside plotting area!\n'
- props = ('linecolor', 'linewidth', 'linestyle', 'arrow',
- 'fillcolor', 'fillpattern')
- for prop in props:
- value = getattr(self, prop)
- if value is not None:
- s += ' %s=%s' % (prop, repr(value))
- return s
- def __repr__(self):
- return str(self)
- class Point(Shape):
- """A point (x,y) which can be rotated, translated, and scaled."""
- def __init__(self, x, y):
- self.x, self.y = x, y
- #self.shapes is not needed in this class
- def __add__(self, other):
- if isinstance(other, (list,tuple)):
- other = Point(other)
- return Point(self.x+other.x, self.y+other.y)
- # class Point is an abstract class - only subclasses are useful
- # and must implement draw
- def draw(self):
- raise NotImplementedError(
- 'class %s must implement the draw method' %
- self.__class__.__name__)
- def rotate(self, angle, center=point(0,0)):
- """Rotate point an `angle` (in degrees) around (`x`,`y`)."""
- angle = angle*pi/180
- x, y = center
- c = cos(angle); s = sin(angle)
- xnew = x + (self.x - x)*c - (self.y - y)*s
- ynew = y + (self.x - x)*s + (self.y - y)*c
- self.x = xnew
- self.y = ynew
- def scale(self, factor):
- """Scale point coordinates by `factor`: ``x = factor*x``, etc."""
- self.x = factor*self.x
- self.y = factor*self.y
- def translate(self, vec):
- """Translate point by a vector `vec`."""
- self.x += vec[0]
- self.y += vec[1]
- def show_hierarchy(self, indent=0, format='std'):
- s = '%s at (%g,%g)' % (self.__class__.__name__, self.x, self.y)
- if format == 'dict':
- return '"%s"' % s
- elif format == 'plain':
- return ''
- else:
- return s
- # no need to store input data as they are invalid after rotations etc.
- class Rectangle(Shape):
- def __init__(self, lower_left_corner, width, height):
- ll = lower_left_corner # short form
- x = [ll[0], ll[0] + width,
- ll[0] + width, ll[0], ll[0]]
- y = [ll[1], ll[1], ll[1] + height,
- ll[1] + height, ll[1]]
- self.shapes = {'rectangle': Curve(x,y)}
- class Triangle(Shape):
- """Triangle defined by its three vertices p1, p2, and p3."""
- def __init__(self, p1, p2, p3):
- x = [p1[0], p2[0], p3[0], p1[0]]
- y = [p1[1], p2[1], p3[1], p1[1]]
- self.shapes = {'triangle': Curve(x,y)}
- class Line(Shape):
- def __init__(self, start, stop):
- x = [start[0], stop[0]]
- y = [start[1], stop[1]]
- self.shapes = {'line': Curve(x, y)}
- self.compute_formulas()
- def compute_formulas(self):
- x, y = self.shapes['line'].x, self.shapes['line'].y
- # Define equations for line:
- # y = a*x + b, x = c*y + d
- try:
- self.a = (y[1] - y[0])/(x[1] - x[0])
- self.b = y[0] - self.a*x[0]
- except ZeroDivisionError:
- # Vertical line, y is not a function of x
- self.a = None
- self.b = None
- try:
- if self.a is None:
- self.c = 0
- else:
- self.c = 1/float(self.a)
- if self.b is None:
- self.d = x[1]
- except ZeroDivisionError:
- # Horizontal line, x is not a function of y
- self.c = None
- self.d = None
- def compute_formulas(self):
- x, y = self.shapes['line'].x, self.shapes['line'].y
- tol = 1E-14
- # Define equations for line:
- # y = a*x + b, x = c*y + d
- if abs(x[1] - x[0]) > tol:
- self.a = (y[1] - y[0])/(x[1] - x[0])
- self.b = y[0] - self.a*x[0]
- else:
- # Vertical line, y is not a function of x
- self.a = None
- self.b = None
- if self.a is None:
- self.c = 0
- elif abs(self.a) > tol:
- self.c = 1/float(self.a)
- self.d = x[1]
- else: # self.a is 0
- # Horizontal line, x is not a function of y
- self.c = None
- self.d = None
- def __call__(self, x=None, y=None):
- """Given x, return y on the line, or given y, return x."""
- self.compute_formulas()
- if x is not None and self.a is not None:
- return self.a*x + self.b
- elif y is not None and self.c is not None:
- return self.c*y + self.d
- else:
- raise ValueError(
- 'Line.__call__(x=%s, y=%s) not meaningful' % \
- (x, y))
- # First implementation of class Circle
- class Circle(Shape):
- def __init__(self, center, radius, resolution=180):
- self.center, self.radius = center, radius
- self.resolution = resolution
- t = linspace(0, 2*pi, resolution+1)
- x0 = center[0]; y0 = center[1]
- R = radius
- x = x0 + R*cos(t)
- y = y0 + R*sin(t)
- self.shapes = {'circle': Curve(x, y)}
- def __call__(self, theta):
- """Return (x, y) point corresponding to theta."""
- return self.center[0] + self.radius*cos(theta), \
- self.center[1] + self.radius*sin(theta)
- class Arc(Shape):
- def __init__(self, center, radius,
- start_degrees, opening_degrees,
- resolution=180):
- self.center = center
- self.radius = radius
- self.start_degrees = start_degrees*pi/180 # radians
- self.opening_degrees = opening_degrees*pi/180
- self.resolution = resolution
- t = linspace(self.start_degrees,
- self.start_degrees + self.opening_degrees,
- resolution+1)
- x0 = center[0]; y0 = center[1]
- R = radius
- x = x0 + R*cos(t)
- y = y0 + R*sin(t)
- self.shapes = {'arc': Curve(x, y)}
- def __call__(self, theta):
- """Return (x,y) point at start_degrees + theta."""
- theta = theta*pi/180
- t = self.start_degrees + theta
- x0 = self.center[0]
- y0 = self.center[1]
- R = self.radius
- x = x0 + R*cos(t)
- y = y0 + R*sin(t)
- return (x, y)
- # Alternative for small arcs: Parabola
- class Parabola(Shape):
- def __init__(self, start, mid, stop, resolution=21):
- self.p1, self.p2, self.p3 = start, mid, stop
- # y as function of x? (no point on line x=const?)
- tol = 1E-14
- if abs(self.p1[0] - self.p2[0]) > 1E-14 and \
- abs(self.p2[0] - self.p3[0]) > 1E-14 and \
- abs(self.p3[0] - self.p1[0]) > 1E-14:
- self.y_of_x = True
- else:
- self.y_of_x = False
- # x as function of y? (no point on line y=const?)
- tol = 1E-14
- if abs(self.p1[1] - self.p2[1]) > 1E-14 and \
- abs(self.p2[1] - self.p3[1]) > 1E-14 and \
- abs(self.p3[1] - self.p1[1]) > 1E-14:
- self.x_of_y = True
- else:
- self.x_of_y = False
- if self.y_of_x:
- x = linspace(start[0], end[0], resolution)
- y = self(x=x)
- elif self.x_of_y:
- y = linspace(start[1], end[1], resolution)
- x = self(y=y)
- else:
- raise ValueError(
- 'Parabola: two or more points lie on x=const '
- 'or y=const - not allowed')
- self.shapes = {'parabola': Curve(x, y)}
- def __call__(self, x=None, y=None):
- if x is not None and self.y_of_x:
- return self._L2x(self.p1, self.p2)*self.p3[1] + \
- self._L2x(self.p2, self.p3)*self.p1[1] + \
- self._L2x(self.p3, self.p1)*self.p2[1]
- elif y is not None and self.x_of_y:
- return self._L2y(self.p1, self.p2)*self.p3[0] + \
- self._L2y(self.p2, self.p3)*self.p1[0] + \
- self._L2y(self.p3, self.p1)*self.p2[0]
- else:
- raise ValueError(
- 'Parabola.__call__(x=%s, y=%s) not meaningful' % \
- (x, y))
- def _L2x(self, x, pi, pj, pk):
- return (x - pi[0])*(x - pj[0])/((pk[0] - pi[0])*(pk[0] - pj[0]))
- def _L2y(self, y, pi, pj, pk):
- return (y - pi[1])*(y - pj[1])/((pk[1] - pi[1])*(pk[1] - pj[1]))
- class Circle(Arc):
- def __init__(self, center, radius, resolution=180):
- Arc.__init__(self, center, radius, 0, 360, resolution)
- # class Wall: horizontal Line with many small Lines 45 degrees
- class XWall(Shape):
- def __init__(start, length, dx, below=True):
- n = int(round(length/float(dx))) # no of intervals
- x = linspace(start[0], start[0] + length, n+1)
- y = start[1]
- dy = dx
- if below:
- taps = [Line((xi,y-dy), (xi+dx, y)) for xi in x[:-1]]
- else:
- taps = [Line((xi,y), (xi+dx, y+dy)) for xi in x[:-1]]
- self.shapes = [Line(start, (start[0]+length, start[1]))] + taps
- class Wall(Shape):
- def __init__(self, start, length, thickness, rotation_angle=0):
- p1 = asarray(start)
- p2 = p1 + asarray([length, 0])
- p3 = p2 + asarray([0, thickness])
- p4 = p1 + asarray([0, thickness])
- p5 = p1
- x = [p[0] for p in p1, p2, p3, p4, p5]
- y = [p[1] for p in p1, p2, p3, p4, p5]
- wall = Curve(x, y)
- wall.set_filled_curves('white', '/')
- wall.rotate(rotation_angle, start)
- self.shapes = {'wall': wall}
- """
- def draw(self):
- x = self.shapes['wall'].x
- y = self.shapes['wall'].y
- drawing_tool.ax.fill(x, y, 'w',
- edgecolor=drawing_tool.linecolor,
- hatch='/')
- """
- class CurveWall(Shape):
- def __init__(self, x, y, thickness):
- x1 = asarray(x, float)
- y1 = asarray(y, float)
- x2 = x1
- y2 = y1 + thickness
- from numpy import concatenate
- # x1/y1 + reversed x2/y2
- x = concatenate((x1, x2[-1::-1]))
- y = concatenate((y1, y2[-1::-1]))
- wall = Curve(x, y)
- wall.set_filled_curves('white', '/')
- self.shapes = {'wall': wall}
- """
- def draw(self):
- x = self.shapes['wall'].x
- y = self.shapes['wall'].y
- drawing_tool.ax.fill(x, y, 'w',
- edgecolor=drawing_tool.linecolor,
- hatch='/')
- """
- class Text(Point):
- def __init__(self, text, position, alignment='center', fontsize=18):
- self.text = text
- self.alignment, self.fontsize = alignment, fontsize
- is_sequence(position, length=2, can_be_None=True)
- Point.__init__(self, position[0], position[1])
- #no need for self.shapes here
- def draw(self):
- drawing_tool.text(self.text, (self.x, self.y),
- self.alignment, self.fontsize)
- def __str__(self):
- return 'text "%s" at (%g,%g)' % (self.text, self.x, self.y)
- def __repr__(self):
- return str(self)
- class Text_wArrow(Text):
- def __init__(self, text, position, arrow_tip,
- alignment='center', fontsize=18):
- is_sequence(arrow_tip, length=2, can_be_None=True)
- self.arrow_tip = arrow_tip
- Text.__init__(self, text, position, alignment, fontsize)
- def draw(self):
- drawing_tool.text(self.text, self.position,
- self.alignment, self.fontsize,
- self.arrow_tip)
- def __str__(self):
- return 'annotation "%s" at (%g,%g) with arrow to (%g,%g)' % \
- (self.text, self.x, self.y,
- self.arrow_tip[0], self.arrow_tip[1])
- def __repr__(self):
- return str(self)
- class Axis(Shape):
- def __init__(self, bottom_point, length, label, below=True,
- rotation_angle=0, label_spacing=1./25):
- """
- Draw axis from bottom_point with `length` to the right
- (x axis). Place label below (True) or above (False) axis.
- Then return `rotation_angle` (in degrees).
- To make a standard x axis, call with ``below=True`` and
- ``rotation_angle=0``. To make a standard y axis, call with
- ``below=False`` and ``rotation_angle=90``.
- A tilted axis can also be drawn.
- The `label_spacing` denotes the space between the symbol
- and the arrow tip as a fraction of the length of the plot
- in x direction.
- """
- # Arrow is vertical arrow, make it horizontal
- arrow = Arrow(bottom_point, length, rotation_angle=-90)
- arrow.rotate(rotation_angle, bottom_point)
- spacing = drawing_tool.xrange*label_spacing
- if below:
- spacing = - spacing
- label_pos = [bottom_point[0] + length, bottom_point[1] + spacing]
- symbol = Text(label, position=label_pos)
- symbol.rotate(rotation_angle, bottom_point)
- self.shapes = {'arrow': arrow, 'symbol': symbol}
- class Gravity(Axis):
- """Downward-pointing gravity arrow with the symbol g."""
- def __init__(self, start, length):
- Axis.__init__(self, start, length, '$g$', below=False,
- rotation_angle=-90, label_spacing=1./30)
- def test_Axis():
- set_coordinate_system(xmin=0, xmax=15, ymin=0, ymax=15, axis=True)
- x_axis = Axis((7.5,2), 5, 'x', rotation_angle=0)
- y_axis = Axis((7.5,2), 5, 'y', below=False, rotation_angle=90)
- system = Compose({'x axis': x_axis, 'y axis': y_axis})
- system.draw()
- drawing_tool.display()
- set_linestyle('dashed')
- system.shapes['x axis'].rotate(40, (7.5, 2))
- system.shapes['y axis'].rotate(40, (7.5, 2))
- system.draw()
- drawing_tool.display()
- print repr(system)
- class DistanceSymbol(Shape):
- """
- Arrow with symbol at the midpoint,
- for identifying a distance with a symbol.
- """
- def __init__(self, start, end, symbol, fontsize=14):
- start = asarray(start, float)
- end = asarray(end, float)
- mid = 0.5*(start + end) # midpoint of start-end line
- tangent = end - start
- normal = asarray([-tangent[1], tangent[0]])/\
- sqrt(tangent[0]**2 + tangent[1]**2)
- symbol_pos = mid + normal*drawing_tool.xrange/60.
- self.shapes = {'arrow': Arrow1(start, end, style='<->'),
- 'symbol': Text(symbol, symbol_pos, fontsize=fontsize)}
- class ArcSymbol(Shape):
- def __init__(self, symbol, center, radius,
- start_degrees, opening_degrees,
- resolution=180, fontsize=14):
- arc = Arc(center, radius, start_degrees, opening_degrees,
- resolution)
- mid = asarray(arc(opening_degrees/2.))
- normal = mid - asarray(center, float)
- normal = normal/sqrt(normal[0]**2 + normal[1]**2)
- symbol_pos = mid + normal*drawing_tool.xrange/60.
- self.shapes = {'arc': arc,
- 'symbol': Text(symbol, symbol_pos, fontsize=fontsize)}
- class Compose(Shape):
- def __init__(self, shapes):
- """shapes: list or dict of Shape objects."""
- self.shapes = shapes
- # can make help methods: Line.midpoint, Line.normal(pt, dir='left') -> (x,y)
- # list annotations in each class? contains extra annotations for explaining
- # important parameters to the constructor, e.g., Line.annotations holds
- # start and end as Text objects. Shape.demo calls shape.draw and
- # for annotation in self.demo: annotation.draw() YES!
- # Can make overall demo of classes by making objects and calling demo
- # Could include demo fig in each constructor
- class Arrow1(Shape):
- """Draw an arrow as Line with arrow."""
- def __init__(self, start, end, style='->'):
- self.start, self.end, self.style = start, end, style
- self.shapes = {'arrow': Line(start, end, arrow=style)}
- class Arrow3(Shape):
- """Draw a vertical line and arrow head. Then rotate `rotation_angle`."""
- def __init__(self, bottom_point, length, rotation_angle=0):
- self.bottom = bottom_point
- self.length = length
- self.angle = rotation_angle
- top = (self.bottom[0], self.bottom[1] + self.length)
- main = Line(self.bottom, top)
- #head_length = self.length/8.0
- head_length = drawing_tool.xrange/50.
- head_degrees = 30*pi/180
- head_left_pt = (top[0] - head_length*sin(head_degrees),
- top[1] - head_length*cos(head_degrees))
- head_right_pt = (top[0] + head_length*sin(head_degrees),
- top[1] - head_length*cos(head_degrees))
- head_left = Line(head_left_pt, top)
- head_right = Line(head_right_pt, top)
- head_left.set_linestyle('solid')
- head_right.set_linestyle('solid')
- self.shapes = {'line': main, 'head left': head_left,
- 'head right': head_right}
- # rotate goes through self.shapes so this must be initialized first
- self.rotate(rotation_angle, bottom_point)
- Arrow = Arrow3 # backward compatibility
- class Wheel(Shape):
- def __init__(self, center, radius, inner_radius=None, nlines=10):
- self.center = center
- self.radius = radius
- if inner_radius is None:
- self.inner_radius = radius/5.0
- else:
- self.inner_radius = inner_radius
- self.nlines = nlines
- outer = Circle(self.center, self.radius)
- inner = Circle(self.center, self.inner_radius)
- lines = []
- # Draw nlines+1 since the first and last coincide
- # (then nlines lines will be visible)
- t = linspace(0, 2*pi, self.nlines+1)
- Ri = self.inner_radius; Ro = self.radius
- x0 = self.center[0]; y0 = self.center[1]
- xinner = x0 + Ri*cos(t)
- yinner = y0 + Ri*sin(t)
- xouter = x0 + Ro*cos(t)
- youter = y0 + Ro*sin(t)
- lines = [Line((xi,yi),(xo,yo)) for xi, yi, xo, yo in \
- zip(xinner, yinner, xouter, youter)]
- self.shapes = [outer, inner] + lines
- class Wave(Shape):
- def __init__(self, xstart, xstop,
- wavelength, amplitude, mean_level):
- self.xstart = xstart
- self.xstop = xstop
- self.wavelength = wavelength
- self.amplitude = amplitude
- self.mean_level = mean_level
- npoints = (self.xstop - self.xstart)/(self.wavelength/61.0)
- x = linspace(self.xstart, self.xstop, npoints)
- k = 2*pi/self.wavelength # frequency
- y = self.mean_level + self.amplitude*sin(k*x)
- self.shapes = {'waves': Curve(x,y)}
- # make a version of Spring using Point class
- class Spring(Shape):
- def __init__(self, bottom_point, length, tagwidth, ntags=4):
- """
- Specify a vertical spring, starting at bottom_point and
- having a specified lengths. In the middle third of the
- spring there are ntags tags.
- """
- self.B = bottom_point
- self.n = ntags - 1 # n counts tag intervals
- # n must be odd:
- if self.n % 2 == 0:
- self.n = self.n+1
- self.L = length
- self.w = tagwidth
- B, L, n, w = self.B, self.L, self.n, self.w # short forms
- t = L/(3.0*n) # must be better worked out
- P0 = (B[0], B[1]+L/3.0)
- P1 = (B[0], B[1]+L/3.0+t/2.0)
- P2 = (B[0], B[1]+L*2/3.0)
- P3 = (B[0], B[1]+L)
- line1 = Line(B, P1)
- lines = [line1]
- #line2 = Line(P2, P3)
- T1 = P1
- T2 = (T1[0] + w, T1[1] + t/2.0)
- lines.append(Line(T1,T2))
- T1 = (T2[0], T2[1])
- for i in range(n):
- T2 = (T1[0] + (-1)**(i+1)*2*w, T1[1] + t/2.0)
- lines.append(Line(T1, T2))
- T1 = (T2[0], T2[1])
- T2 = (T1[0] + w, T1[1] + t/2.0)
- lines.append(Line(T1,T2))
- #print P2, T2
- lines.append(Line(T2, P3))
- self.shapes = lines
- # COMPOSITE types:
- # MassSpringForce: Line(horizontal), Spring, Rectangle, Arrow/Line(w/arrow)
- # must be easy to find the tip of the arrow
- # Maybe extra dict: self.name['mass'] = Rectangle object - YES!
- def _test1():
- set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)
- l1 = Line((0,0), (1,1))
- l1.draw()
- input(': ')
- c1 = Circle((5,2), 1)
- c2 = Circle((6,2), 1)
- w1 = Wheel((7,2), 1)
- c1.draw()
- c2.draw()
- w1.draw()
- hardcopy()
- display() # show the plot
- def _test2():
- set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)
- l1 = Line((0,0), (1,1))
- l1.draw()
- input(': ')
- c1 = Circle((5,2), 1)
- c2 = Circle((6,2), 1)
- w1 = Wheel((7,2), 1)
- filled_curves(True)
- set_linecolor('blue')
- c1.draw()
- set_linecolor('aqua')
- c2.draw()
- filled_curves(False)
- set_linecolor('red')
- w1.draw()
- hardcopy()
- display() # show the plot
- def _test3():
- """Test example from the book."""
- set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)
- l1 = Line(start=(0,0), stop=(1,1)) # define line
- l1.draw() # make plot data
- r1 = Rectangle(lower_left_corner=(0,1), width=3, height=5)
- r1.draw()
- Circle(center=(5,7), radius=1).draw()
- Wheel(center=(6,2), radius=2, inner_radius=0.5, nlines=7).draw()
- hardcopy()
- display()
- def _test4():
- """Second example from the book."""
- set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)
- r1 = Rectangle(lower_left_corner=(0,1), width=3, height=5)
- c1 = Circle(center=(5,7), radius=1)
- w1 = Wheel(center=(6,2), radius=2, inner_radius=0.5, nlines=7)
- c2 = Circle(center=(7,7), radius=1)
- filled_curves(True)
- c1.draw()
- set_linecolor('blue')
- r1.draw()
- set_linecolor('aqua')
- c2.draw()
- # Add thick aqua line around rectangle:
- filled_curves(False)
- set_linewidth(4)
- r1.draw()
- set_linecolor('red')
- # Draw wheel with thick lines:
- w1.draw()
- hardcopy('tmp_colors')
- display()
- def _test5():
- set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)
- c = 6. # center point of box
- w = 2. # size of box
- L = 3
- r1 = Rectangle((c-w/2, c-w/2), w, w)
- l1 = Line((c,c-w/2), (c,c-w/2-L))
- linecolor('blue')
- filled_curves(True)
- r1.draw()
- linecolor('aqua')
- filled_curves(False)
- l1.draw()
- hardcopy()
- display() # show the plot
- def rolling_wheel(total_rotation_angle):
- """Animation of a rotating wheel."""
- set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)
- import time
- center = (6,2)
- radius = 2.0
- angle = 2.0
- pngfiles = []
- w1 = Wheel(center=center, radius=radius, inner_radius=0.5, nlines=7)
- for i in range(int(total_rotation_angle/angle)):
- w1.draw()
- print 'XXXXXXXXXXXXXXXXXXXXXX BIG PROBLEM WITH ANIMATE!!!'
- display()
- filename = 'tmp_%03d' % i
- pngfiles.append(filename + '.png')
- hardcopy(filename)
- time.sleep(0.3) # pause
- L = radius*angle*pi/180 # translation = arc length
- w1.rotate(angle, center)
- w1.translate((-L, 0))
- center = (center[0] - L, center[1])
- erase()
- cmd = 'convert -delay 50 -loop 1000 %s tmp_movie.gif' \
- % (' '.join(pngfiles))
- print 'converting PNG files to animated GIF:\n', cmd
- import commands
- failure, output = commands.getstatusoutput(cmd)
- if failure: print 'Could not run', cmd
- def is_sequence(seq, length=None,
- can_be_None=False, error_message=True):
- if can_be_None:
- legal_types = (list,tuple,ndarray,None)
- else:
- legal_types = (list,tuple,ndarray)
- if isinstance(seq, legal_types):
- if length is not None:
- if length == len(seq):
- return True
- elif error_message:
- raise TypeError('%s is %s; must be %s of length %d' %
- (str(point), type(point),
- ', '.join([str(t) for t in legal_types]),
- len(seq)))
- else:
- return False
- else:
- return True
- elif error_message:
- raise TypeError('%s is %s; must be %s' %
- str(point), type(point),
- ', '.join([str(t) for t in legal_types]))
- else:
- return False
- if __name__ == '__main__':
- #rolling_wheel(40)
- #_test1()
- #_test3()
- funcs = [
- #test_Axis,
- test_inclined_plane,
- ]
- for func in funcs:
- func()
- raw_input('Type Return: ')
|