| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574 |
- # Natural Language Toolkit: Maximum Entropy Classifiers
- #
- # Copyright (C) 2001-2020 NLTK Project
- # Author: Edward Loper <edloper@gmail.com>
- # Dmitry Chichkov <dchichkov@gmail.com> (TypedMaxentFeatureEncoding)
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- """
- A classifier model based on maximum entropy modeling framework. This
- framework considers all of the probability distributions that are
- empirically consistent with the training data; and chooses the
- distribution with the highest entropy. A probability distribution is
- "empirically consistent" with a set of training data if its estimated
- frequency with which a class and a feature vector value co-occur is
- equal to the actual frequency in the data.
- Terminology: 'feature'
- ======================
- The term *feature* is usually used to refer to some property of an
- unlabeled token. For example, when performing word sense
- disambiguation, we might define a ``'prevword'`` feature whose value is
- the word preceding the target word. However, in the context of
- maxent modeling, the term *feature* is typically used to refer to a
- property of a "labeled" token. In order to prevent confusion, we
- will introduce two distinct terms to disambiguate these two different
- concepts:
- - An "input-feature" is a property of an unlabeled token.
- - A "joint-feature" is a property of a labeled token.
- In the rest of the ``nltk.classify`` module, the term "features" is
- used to refer to what we will call "input-features" in this module.
- In literature that describes and discusses maximum entropy models,
- input-features are typically called "contexts", and joint-features
- are simply referred to as "features".
- Converting Input-Features to Joint-Features
- -------------------------------------------
- In maximum entropy models, joint-features are required to have numeric
- values. Typically, each input-feature ``input_feat`` is mapped to a
- set of joint-features of the form:
- | joint_feat(token, label) = { 1 if input_feat(token) == feat_val
- | { and label == some_label
- | {
- | { 0 otherwise
- For all values of ``feat_val`` and ``some_label``. This mapping is
- performed by classes that implement the ``MaxentFeatureEncodingI``
- interface.
- """
- try:
- import numpy
- except ImportError:
- pass
- import tempfile
- import os
- from collections import defaultdict
- from nltk.data import gzip_open_unicode
- from nltk.util import OrderedDict
- from nltk.probability import DictionaryProbDist
- from nltk.classify.api import ClassifierI
- from nltk.classify.util import CutoffChecker, accuracy, log_likelihood
- from nltk.classify.megam import call_megam, write_megam_file, parse_megam_weights
- from nltk.classify.tadm import call_tadm, write_tadm_file, parse_tadm_weights
- __docformat__ = "epytext en"
- ######################################################################
- # { Classifier Model
- ######################################################################
- class MaxentClassifier(ClassifierI):
- """
- A maximum entropy classifier (also known as a "conditional
- exponential classifier"). This classifier is parameterized by a
- set of "weights", which are used to combine the joint-features
- that are generated from a featureset by an "encoding". In
- particular, the encoding maps each ``(featureset, label)`` pair to
- a vector. The probability of each label is then computed using
- the following equation::
- dotprod(weights, encode(fs,label))
- prob(fs|label) = ---------------------------------------------------
- sum(dotprod(weights, encode(fs,l)) for l in labels)
- Where ``dotprod`` is the dot product::
- dotprod(a,b) = sum(x*y for (x,y) in zip(a,b))
- """
- def __init__(self, encoding, weights, logarithmic=True):
- """
- Construct a new maxent classifier model. Typically, new
- classifier models are created using the ``train()`` method.
- :type encoding: MaxentFeatureEncodingI
- :param encoding: An encoding that is used to convert the
- featuresets that are given to the ``classify`` method into
- joint-feature vectors, which are used by the maxent
- classifier model.
- :type weights: list of float
- :param weights: The feature weight vector for this classifier.
- :type logarithmic: bool
- :param logarithmic: If false, then use non-logarithmic weights.
- """
- self._encoding = encoding
- self._weights = weights
- self._logarithmic = logarithmic
- # self._logarithmic = False
- assert encoding.length() == len(weights)
- def labels(self):
- return self._encoding.labels()
- def set_weights(self, new_weights):
- """
- Set the feature weight vector for this classifier.
- :param new_weights: The new feature weight vector.
- :type new_weights: list of float
- """
- self._weights = new_weights
- assert self._encoding.length() == len(new_weights)
- def weights(self):
- """
- :return: The feature weight vector for this classifier.
- :rtype: list of float
- """
- return self._weights
- def classify(self, featureset):
- return self.prob_classify(featureset).max()
- def prob_classify(self, featureset):
- prob_dict = {}
- for label in self._encoding.labels():
- feature_vector = self._encoding.encode(featureset, label)
- if self._logarithmic:
- total = 0.0
- for (f_id, f_val) in feature_vector:
- total += self._weights[f_id] * f_val
- prob_dict[label] = total
- else:
- prod = 1.0
- for (f_id, f_val) in feature_vector:
- prod *= self._weights[f_id] ** f_val
- prob_dict[label] = prod
- # Normalize the dictionary to give a probability distribution
- return DictionaryProbDist(prob_dict, log=self._logarithmic, normalize=True)
- def explain(self, featureset, columns=4):
- """
- Print a table showing the effect of each of the features in
- the given feature set, and how they combine to determine the
- probabilities of each label for that featureset.
- """
- descr_width = 50
- TEMPLATE = " %-" + str(descr_width - 2) + "s%s%8.3f"
- pdist = self.prob_classify(featureset)
- labels = sorted(pdist.samples(), key=pdist.prob, reverse=True)
- labels = labels[:columns]
- print(
- " Feature".ljust(descr_width)
- + "".join("%8s" % (("%s" % l)[:7]) for l in labels)
- )
- print(" " + "-" * (descr_width - 2 + 8 * len(labels)))
- sums = defaultdict(int)
- for i, label in enumerate(labels):
- feature_vector = self._encoding.encode(featureset, label)
- feature_vector.sort(
- key=lambda fid__: abs(self._weights[fid__[0]]), reverse=True
- )
- for (f_id, f_val) in feature_vector:
- if self._logarithmic:
- score = self._weights[f_id] * f_val
- else:
- score = self._weights[f_id] ** f_val
- descr = self._encoding.describe(f_id)
- descr = descr.split(" and label is ")[0] # hack
- descr += " (%s)" % f_val # hack
- if len(descr) > 47:
- descr = descr[:44] + "..."
- print(TEMPLATE % (descr, i * 8 * " ", score))
- sums[label] += score
- print(" " + "-" * (descr_width - 1 + 8 * len(labels)))
- print(
- " TOTAL:".ljust(descr_width) + "".join("%8.3f" % sums[l] for l in labels)
- )
- print(
- " PROBS:".ljust(descr_width)
- + "".join("%8.3f" % pdist.prob(l) for l in labels)
- )
- def most_informative_features(self, n=10):
- """
- Generates the ranked list of informative features from most to least.
- """
- if hasattr(self, "_most_informative_features"):
- return self._most_informative_features[:n]
- else:
- self._most_informative_features = sorted(
- list(range(len(self._weights))),
- key=lambda fid: abs(self._weights[fid]),
- reverse=True,
- )
- return self._most_informative_features[:n]
- def show_most_informative_features(self, n=10, show="all"):
- """
- :param show: all, neg, or pos (for negative-only or positive-only)
- :type show: str
- :param n: The no. of top features
- :type n: int
- """
- # Use None the full list of ranked features.
- fids = self.most_informative_features(None)
- if show == "pos":
- fids = [fid for fid in fids if self._weights[fid] > 0]
- elif show == "neg":
- fids = [fid for fid in fids if self._weights[fid] < 0]
- for fid in fids[:n]:
- print("%8.3f %s" % (self._weights[fid], self._encoding.describe(fid)))
- def __repr__(self):
- return "<ConditionalExponentialClassifier: %d labels, %d features>" % (
- len(self._encoding.labels()),
- self._encoding.length(),
- )
- #: A list of the algorithm names that are accepted for the
- #: ``train()`` method's ``algorithm`` parameter.
- ALGORITHMS = ["GIS", "IIS", "MEGAM", "TADM"]
- @classmethod
- def train(
- cls,
- train_toks,
- algorithm=None,
- trace=3,
- encoding=None,
- labels=None,
- gaussian_prior_sigma=0,
- **cutoffs
- ):
- """
- Train a new maxent classifier based on the given corpus of
- training samples. This classifier will have its weights
- chosen to maximize entropy while remaining empirically
- consistent with the training corpus.
- :rtype: MaxentClassifier
- :return: The new maxent classifier
- :type train_toks: list
- :param train_toks: Training data, represented as a list of
- pairs, the first member of which is a featureset,
- and the second of which is a classification label.
- :type algorithm: str
- :param algorithm: A case-insensitive string, specifying which
- algorithm should be used to train the classifier. The
- following algorithms are currently available.
- - Iterative Scaling Methods: Generalized Iterative Scaling (``'GIS'``),
- Improved Iterative Scaling (``'IIS'``)
- - External Libraries (requiring megam):
- LM-BFGS algorithm, with training performed by Megam (``'megam'``)
- The default algorithm is ``'IIS'``.
- :type trace: int
- :param trace: The level of diagnostic tracing output to produce.
- Higher values produce more verbose output.
- :type encoding: MaxentFeatureEncodingI
- :param encoding: A feature encoding, used to convert featuresets
- into feature vectors. If none is specified, then a
- ``BinaryMaxentFeatureEncoding`` will be built based on the
- features that are attested in the training corpus.
- :type labels: list(str)
- :param labels: The set of possible labels. If none is given, then
- the set of all labels attested in the training data will be
- used instead.
- :param gaussian_prior_sigma: The sigma value for a gaussian
- prior on model weights. Currently, this is supported by
- ``megam``. For other algorithms, its value is ignored.
- :param cutoffs: Arguments specifying various conditions under
- which the training should be halted. (Some of the cutoff
- conditions are not supported by some algorithms.)
- - ``max_iter=v``: Terminate after ``v`` iterations.
- - ``min_ll=v``: Terminate after the negative average
- log-likelihood drops under ``v``.
- - ``min_lldelta=v``: Terminate if a single iteration improves
- log likelihood by less than ``v``.
- """
- if algorithm is None:
- algorithm = "iis"
- for key in cutoffs:
- if key not in (
- "max_iter",
- "min_ll",
- "min_lldelta",
- "max_acc",
- "min_accdelta",
- "count_cutoff",
- "norm",
- "explicit",
- "bernoulli",
- ):
- raise TypeError("Unexpected keyword arg %r" % key)
- algorithm = algorithm.lower()
- if algorithm == "iis":
- return train_maxent_classifier_with_iis(
- train_toks, trace, encoding, labels, **cutoffs
- )
- elif algorithm == "gis":
- return train_maxent_classifier_with_gis(
- train_toks, trace, encoding, labels, **cutoffs
- )
- elif algorithm == "megam":
- return train_maxent_classifier_with_megam(
- train_toks, trace, encoding, labels, gaussian_prior_sigma, **cutoffs
- )
- elif algorithm == "tadm":
- kwargs = cutoffs
- kwargs["trace"] = trace
- kwargs["encoding"] = encoding
- kwargs["labels"] = labels
- kwargs["gaussian_prior_sigma"] = gaussian_prior_sigma
- return TadmMaxentClassifier.train(train_toks, **kwargs)
- else:
- raise ValueError("Unknown algorithm %s" % algorithm)
- #: Alias for MaxentClassifier.
- ConditionalExponentialClassifier = MaxentClassifier
- ######################################################################
- # { Feature Encodings
- ######################################################################
- class MaxentFeatureEncodingI(object):
- """
- A mapping that converts a set of input-feature values to a vector
- of joint-feature values, given a label. This conversion is
- necessary to translate featuresets into a format that can be used
- by maximum entropy models.
- The set of joint-features used by a given encoding is fixed, and
- each index in the generated joint-feature vectors corresponds to a
- single joint-feature. The length of the generated joint-feature
- vectors is therefore constant (for a given encoding).
- Because the joint-feature vectors generated by
- ``MaxentFeatureEncodingI`` are typically very sparse, they are
- represented as a list of ``(index, value)`` tuples, specifying the
- value of each non-zero joint-feature.
- Feature encodings are generally created using the ``train()``
- method, which generates an appropriate encoding based on the
- input-feature values and labels that are present in a given
- corpus.
- """
- def encode(self, featureset, label):
- """
- Given a (featureset, label) pair, return the corresponding
- vector of joint-feature values. This vector is represented as
- a list of ``(index, value)`` tuples, specifying the value of
- each non-zero joint-feature.
- :type featureset: dict
- :rtype: list(tuple(int, int))
- """
- raise NotImplementedError()
- def length(self):
- """
- :return: The size of the fixed-length joint-feature vectors
- that are generated by this encoding.
- :rtype: int
- """
- raise NotImplementedError()
- def labels(self):
- """
- :return: A list of the \"known labels\" -- i.e., all labels
- ``l`` such that ``self.encode(fs,l)`` can be a nonzero
- joint-feature vector for some value of ``fs``.
- :rtype: list
- """
- raise NotImplementedError()
- def describe(self, fid):
- """
- :return: A string describing the value of the joint-feature
- whose index in the generated feature vectors is ``fid``.
- :rtype: str
- """
- raise NotImplementedError()
- def train(cls, train_toks):
- """
- Construct and return new feature encoding, based on a given
- training corpus ``train_toks``.
- :type train_toks: list(tuple(dict, str))
- :param train_toks: Training data, represented as a list of
- pairs, the first member of which is a feature dictionary,
- and the second of which is a classification label.
- """
- raise NotImplementedError()
- class FunctionBackedMaxentFeatureEncoding(MaxentFeatureEncodingI):
- """
- A feature encoding that calls a user-supplied function to map a
- given featureset/label pair to a sparse joint-feature vector.
- """
- def __init__(self, func, length, labels):
- """
- Construct a new feature encoding based on the given function.
- :type func: (callable)
- :param func: A function that takes two arguments, a featureset
- and a label, and returns the sparse joint feature vector
- that encodes them::
- func(featureset, label) -> feature_vector
- This sparse joint feature vector (``feature_vector``) is a
- list of ``(index,value)`` tuples.
- :type length: int
- :param length: The size of the fixed-length joint-feature
- vectors that are generated by this encoding.
- :type labels: list
- :param labels: A list of the \"known labels\" for this
- encoding -- i.e., all labels ``l`` such that
- ``self.encode(fs,l)`` can be a nonzero joint-feature vector
- for some value of ``fs``.
- """
- self._length = length
- self._func = func
- self._labels = labels
- def encode(self, featureset, label):
- return self._func(featureset, label)
- def length(self):
- return self._length
- def labels(self):
- return self._labels
- def describe(self, fid):
- return "no description available"
- class BinaryMaxentFeatureEncoding(MaxentFeatureEncodingI):
- """
- A feature encoding that generates vectors containing a binary
- joint-features of the form:
- | joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
- | {
- | { 0 otherwise
- Where ``fname`` is the name of an input-feature, ``fval`` is a value
- for that input-feature, and ``label`` is a label.
- Typically, these features are constructed based on a training
- corpus, using the ``train()`` method. This method will create one
- feature for each combination of ``fname``, ``fval``, and ``label``
- that occurs at least once in the training corpus.
- The ``unseen_features`` parameter can be used to add "unseen-value
- features", which are used whenever an input feature has a value
- that was not encountered in the training corpus. These features
- have the form:
- | joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
- | { and l == label
- | {
- | { 0 otherwise
- Where ``is_unseen(fname, fval)`` is true if the encoding does not
- contain any joint features that are true when ``fs[fname]==fval``.
- The ``alwayson_features`` parameter can be used to add "always-on
- features", which have the form::
- | joint_feat(fs, l) = { 1 if (l == label)
- | {
- | { 0 otherwise
- These always-on features allow the maxent model to directly model
- the prior probabilities of each label.
- """
- def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
- """
- :param labels: A list of the \"known labels\" for this encoding.
- :param mapping: A dictionary mapping from ``(fname,fval,label)``
- tuples to corresponding joint-feature indexes. These
- indexes must be the set of integers from 0...len(mapping).
- If ``mapping[fname,fval,label]=id``, then
- ``self.encode(..., fname:fval, ..., label)[id]`` is 1;
- otherwise, it is 0.
- :param unseen_features: If true, then include unseen value
- features in the generated joint-feature vectors.
- :param alwayson_features: If true, then include always-on
- features in the generated joint-feature vectors.
- """
- if set(mapping.values()) != set(range(len(mapping))):
- raise ValueError(
- "Mapping values must be exactly the "
- "set of integers from 0...len(mapping)"
- )
- self._labels = list(labels)
- """A list of attested labels."""
- self._mapping = mapping
- """dict mapping from (fname,fval,label) -> fid"""
- self._length = len(mapping)
- """The length of generated joint feature vectors."""
- self._alwayson = None
- """dict mapping from label -> fid"""
- self._unseen = None
- """dict mapping from fname -> fid"""
- if alwayson_features:
- self._alwayson = dict(
- (label, i + self._length) for (i, label) in enumerate(labels)
- )
- self._length += len(self._alwayson)
- if unseen_features:
- fnames = set(fname for (fname, fval, label) in mapping)
- self._unseen = dict(
- (fname, i + self._length) for (i, fname) in enumerate(fnames)
- )
- self._length += len(fnames)
- def encode(self, featureset, label):
- # Inherit docs.
- encoding = []
- # Convert input-features to joint-features:
- for fname, fval in featureset.items():
- # Known feature name & value:
- if (fname, fval, label) in self._mapping:
- encoding.append((self._mapping[fname, fval, label], 1))
- # Otherwise, we might want to fire an "unseen-value feature".
- elif self._unseen:
- # Have we seen this fname/fval combination with any label?
- for label2 in self._labels:
- if (fname, fval, label2) in self._mapping:
- break # we've seen this fname/fval combo
- # We haven't -- fire the unseen-value feature
- else:
- if fname in self._unseen:
- encoding.append((self._unseen[fname], 1))
- # Add always-on features:
- if self._alwayson and label in self._alwayson:
- encoding.append((self._alwayson[label], 1))
- return encoding
- def describe(self, f_id):
- # Inherit docs.
- if not isinstance(f_id, int):
- raise TypeError("describe() expected an int")
- try:
- self._inv_mapping
- except AttributeError:
- self._inv_mapping = [-1] * len(self._mapping)
- for (info, i) in self._mapping.items():
- self._inv_mapping[i] = info
- if f_id < len(self._mapping):
- (fname, fval, label) = self._inv_mapping[f_id]
- return "%s==%r and label is %r" % (fname, fval, label)
- elif self._alwayson and f_id in self._alwayson.values():
- for (label, f_id2) in self._alwayson.items():
- if f_id == f_id2:
- return "label is %r" % label
- elif self._unseen and f_id in self._unseen.values():
- for (fname, f_id2) in self._unseen.items():
- if f_id == f_id2:
- return "%s is unseen" % fname
- else:
- raise ValueError("Bad feature id")
- def labels(self):
- # Inherit docs.
- return self._labels
- def length(self):
- # Inherit docs.
- return self._length
- @classmethod
- def train(cls, train_toks, count_cutoff=0, labels=None, **options):
- """
- Construct and return new feature encoding, based on a given
- training corpus ``train_toks``. See the class description
- ``BinaryMaxentFeatureEncoding`` for a description of the
- joint-features that will be included in this encoding.
- :type train_toks: list(tuple(dict, str))
- :param train_toks: Training data, represented as a list of
- pairs, the first member of which is a feature dictionary,
- and the second of which is a classification label.
- :type count_cutoff: int
- :param count_cutoff: A cutoff value that is used to discard
- rare joint-features. If a joint-feature's value is 1
- fewer than ``count_cutoff`` times in the training corpus,
- then that joint-feature is not included in the generated
- encoding.
- :type labels: list
- :param labels: A list of labels that should be used by the
- classifier. If not specified, then the set of labels
- attested in ``train_toks`` will be used.
- :param options: Extra parameters for the constructor, such as
- ``unseen_features`` and ``alwayson_features``.
- """
- mapping = {} # maps (fname, fval, label) -> fid
- seen_labels = set() # The set of labels we've encountered
- count = defaultdict(int) # maps (fname, fval) -> count
- for (tok, label) in train_toks:
- if labels and label not in labels:
- raise ValueError("Unexpected label %s" % label)
- seen_labels.add(label)
- # Record each of the features.
- for (fname, fval) in tok.items():
- # If a count cutoff is given, then only add a joint
- # feature once the corresponding (fname, fval, label)
- # tuple exceeds that cutoff.
- count[fname, fval] += 1
- if count[fname, fval] >= count_cutoff:
- if (fname, fval, label) not in mapping:
- mapping[fname, fval, label] = len(mapping)
- if labels is None:
- labels = seen_labels
- return cls(labels, mapping, **options)
- class GISEncoding(BinaryMaxentFeatureEncoding):
- """
- A binary feature encoding which adds one new joint-feature to the
- joint-features defined by ``BinaryMaxentFeatureEncoding``: a
- correction feature, whose value is chosen to ensure that the
- sparse vector always sums to a constant non-negative number. This
- new feature is used to ensure two preconditions for the GIS
- training algorithm:
- - At least one feature vector index must be nonzero for every
- token.
- - The feature vector must sum to a constant non-negative number
- for every token.
- """
- def __init__(
- self, labels, mapping, unseen_features=False, alwayson_features=False, C=None
- ):
- """
- :param C: The correction constant. The value of the correction
- feature is based on this value. In particular, its value is
- ``C - sum([v for (f,v) in encoding])``.
- :seealso: ``BinaryMaxentFeatureEncoding.__init__``
- """
- BinaryMaxentFeatureEncoding.__init__(
- self, labels, mapping, unseen_features, alwayson_features
- )
- if C is None:
- C = len(set(fname for (fname, fval, label) in mapping)) + 1
- self._C = C
- @property
- def C(self):
- """The non-negative constant that all encoded feature vectors
- will sum to."""
- return self._C
- def encode(self, featureset, label):
- # Get the basic encoding.
- encoding = BinaryMaxentFeatureEncoding.encode(self, featureset, label)
- base_length = BinaryMaxentFeatureEncoding.length(self)
- # Add a correction feature.
- total = sum(v for (f, v) in encoding)
- if total >= self._C:
- raise ValueError("Correction feature is not high enough!")
- encoding.append((base_length, self._C - total))
- # Return the result
- return encoding
- def length(self):
- return BinaryMaxentFeatureEncoding.length(self) + 1
- def describe(self, f_id):
- if f_id == BinaryMaxentFeatureEncoding.length(self):
- return "Correction feature (%s)" % self._C
- else:
- return BinaryMaxentFeatureEncoding.describe(self, f_id)
- class TadmEventMaxentFeatureEncoding(BinaryMaxentFeatureEncoding):
- def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
- self._mapping = OrderedDict(mapping)
- self._label_mapping = OrderedDict()
- BinaryMaxentFeatureEncoding.__init__(
- self, labels, self._mapping, unseen_features, alwayson_features
- )
- def encode(self, featureset, label):
- encoding = []
- for feature, value in featureset.items():
- if (feature, label) not in self._mapping:
- self._mapping[(feature, label)] = len(self._mapping)
- if value not in self._label_mapping:
- if not isinstance(value, int):
- self._label_mapping[value] = len(self._label_mapping)
- else:
- self._label_mapping[value] = value
- encoding.append(
- (self._mapping[(feature, label)], self._label_mapping[value])
- )
- return encoding
- def labels(self):
- return self._labels
- def describe(self, fid):
- for (feature, label) in self._mapping:
- if self._mapping[(feature, label)] == fid:
- return (feature, label)
- def length(self):
- return len(self._mapping)
- @classmethod
- def train(cls, train_toks, count_cutoff=0, labels=None, **options):
- mapping = OrderedDict()
- if not labels:
- labels = []
- # This gets read twice, so compute the values in case it's lazy.
- train_toks = list(train_toks)
- for (featureset, label) in train_toks:
- if label not in labels:
- labels.append(label)
- for (featureset, label) in train_toks:
- for label in labels:
- for feature in featureset:
- if (feature, label) not in mapping:
- mapping[(feature, label)] = len(mapping)
- return cls(labels, mapping, **options)
- class TypedMaxentFeatureEncoding(MaxentFeatureEncodingI):
- """
- A feature encoding that generates vectors containing integer,
- float and binary joint-features of the form:
- Binary (for string and boolean features):
- | joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
- | {
- | { 0 otherwise
- Value (for integer and float features):
- | joint_feat(fs, l) = { fval if (fs[fname] == type(fval))
- | { and (l == label)
- | {
- | { not encoded otherwise
- Where ``fname`` is the name of an input-feature, ``fval`` is a value
- for that input-feature, and ``label`` is a label.
- Typically, these features are constructed based on a training
- corpus, using the ``train()`` method.
- For string and boolean features [type(fval) not in (int, float)]
- this method will create one feature for each combination of
- ``fname``, ``fval``, and ``label`` that occurs at least once in the
- training corpus.
- For integer and float features [type(fval) in (int, float)] this
- method will create one feature for each combination of ``fname``
- and ``label`` that occurs at least once in the training corpus.
- For binary features the ``unseen_features`` parameter can be used
- to add "unseen-value features", which are used whenever an input
- feature has a value that was not encountered in the training
- corpus. These features have the form:
- | joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
- | { and l == label
- | {
- | { 0 otherwise
- Where ``is_unseen(fname, fval)`` is true if the encoding does not
- contain any joint features that are true when ``fs[fname]==fval``.
- The ``alwayson_features`` parameter can be used to add "always-on
- features", which have the form:
- | joint_feat(fs, l) = { 1 if (l == label)
- | {
- | { 0 otherwise
- These always-on features allow the maxent model to directly model
- the prior probabilities of each label.
- """
- def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
- """
- :param labels: A list of the \"known labels\" for this encoding.
- :param mapping: A dictionary mapping from ``(fname,fval,label)``
- tuples to corresponding joint-feature indexes. These
- indexes must be the set of integers from 0...len(mapping).
- If ``mapping[fname,fval,label]=id``, then
- ``self.encode({..., fname:fval, ...``, label)[id]} is 1;
- otherwise, it is 0.
- :param unseen_features: If true, then include unseen value
- features in the generated joint-feature vectors.
- :param alwayson_features: If true, then include always-on
- features in the generated joint-feature vectors.
- """
- if set(mapping.values()) != set(range(len(mapping))):
- raise ValueError(
- "Mapping values must be exactly the "
- "set of integers from 0...len(mapping)"
- )
- self._labels = list(labels)
- """A list of attested labels."""
- self._mapping = mapping
- """dict mapping from (fname,fval,label) -> fid"""
- self._length = len(mapping)
- """The length of generated joint feature vectors."""
- self._alwayson = None
- """dict mapping from label -> fid"""
- self._unseen = None
- """dict mapping from fname -> fid"""
- if alwayson_features:
- self._alwayson = dict(
- (label, i + self._length) for (i, label) in enumerate(labels)
- )
- self._length += len(self._alwayson)
- if unseen_features:
- fnames = set(fname for (fname, fval, label) in mapping)
- self._unseen = dict(
- (fname, i + self._length) for (i, fname) in enumerate(fnames)
- )
- self._length += len(fnames)
- def encode(self, featureset, label):
- # Inherit docs.
- encoding = []
- # Convert input-features to joint-features:
- for fname, fval in featureset.items():
- if isinstance(fval, (int, float)):
- # Known feature name & value:
- if (fname, type(fval), label) in self._mapping:
- encoding.append((self._mapping[fname, type(fval), label], fval))
- else:
- # Known feature name & value:
- if (fname, fval, label) in self._mapping:
- encoding.append((self._mapping[fname, fval, label], 1))
- # Otherwise, we might want to fire an "unseen-value feature".
- elif self._unseen:
- # Have we seen this fname/fval combination with any label?
- for label2 in self._labels:
- if (fname, fval, label2) in self._mapping:
- break # we've seen this fname/fval combo
- # We haven't -- fire the unseen-value feature
- else:
- if fname in self._unseen:
- encoding.append((self._unseen[fname], 1))
- # Add always-on features:
- if self._alwayson and label in self._alwayson:
- encoding.append((self._alwayson[label], 1))
- return encoding
- def describe(self, f_id):
- # Inherit docs.
- if not isinstance(f_id, int):
- raise TypeError("describe() expected an int")
- try:
- self._inv_mapping
- except AttributeError:
- self._inv_mapping = [-1] * len(self._mapping)
- for (info, i) in self._mapping.items():
- self._inv_mapping[i] = info
- if f_id < len(self._mapping):
- (fname, fval, label) = self._inv_mapping[f_id]
- return "%s==%r and label is %r" % (fname, fval, label)
- elif self._alwayson and f_id in self._alwayson.values():
- for (label, f_id2) in self._alwayson.items():
- if f_id == f_id2:
- return "label is %r" % label
- elif self._unseen and f_id in self._unseen.values():
- for (fname, f_id2) in self._unseen.items():
- if f_id == f_id2:
- return "%s is unseen" % fname
- else:
- raise ValueError("Bad feature id")
- def labels(self):
- # Inherit docs.
- return self._labels
- def length(self):
- # Inherit docs.
- return self._length
- @classmethod
- def train(cls, train_toks, count_cutoff=0, labels=None, **options):
- """
- Construct and return new feature encoding, based on a given
- training corpus ``train_toks``. See the class description
- ``TypedMaxentFeatureEncoding`` for a description of the
- joint-features that will be included in this encoding.
- Note: recognized feature values types are (int, float), over
- types are interpreted as regular binary features.
- :type train_toks: list(tuple(dict, str))
- :param train_toks: Training data, represented as a list of
- pairs, the first member of which is a feature dictionary,
- and the second of which is a classification label.
- :type count_cutoff: int
- :param count_cutoff: A cutoff value that is used to discard
- rare joint-features. If a joint-feature's value is 1
- fewer than ``count_cutoff`` times in the training corpus,
- then that joint-feature is not included in the generated
- encoding.
- :type labels: list
- :param labels: A list of labels that should be used by the
- classifier. If not specified, then the set of labels
- attested in ``train_toks`` will be used.
- :param options: Extra parameters for the constructor, such as
- ``unseen_features`` and ``alwayson_features``.
- """
- mapping = {} # maps (fname, fval, label) -> fid
- seen_labels = set() # The set of labels we've encountered
- count = defaultdict(int) # maps (fname, fval) -> count
- for (tok, label) in train_toks:
- if labels and label not in labels:
- raise ValueError("Unexpected label %s" % label)
- seen_labels.add(label)
- # Record each of the features.
- for (fname, fval) in tok.items():
- if type(fval) in (int, float):
- fval = type(fval)
- # If a count cutoff is given, then only add a joint
- # feature once the corresponding (fname, fval, label)
- # tuple exceeds that cutoff.
- count[fname, fval] += 1
- if count[fname, fval] >= count_cutoff:
- if (fname, fval, label) not in mapping:
- mapping[fname, fval, label] = len(mapping)
- if labels is None:
- labels = seen_labels
- return cls(labels, mapping, **options)
- ######################################################################
- # { Classifier Trainer: Generalized Iterative Scaling
- ######################################################################
- def train_maxent_classifier_with_gis(
- train_toks, trace=3, encoding=None, labels=None, **cutoffs
- ):
- """
- Train a new ``ConditionalExponentialClassifier``, using the given
- training samples, using the Generalized Iterative Scaling
- algorithm. This ``ConditionalExponentialClassifier`` will encode
- the model that maximizes entropy from all the models that are
- empirically consistent with ``train_toks``.
- :see: ``train_maxent_classifier()`` for parameter descriptions.
- """
- cutoffs.setdefault("max_iter", 100)
- cutoffchecker = CutoffChecker(cutoffs)
- # Construct an encoding from the training data.
- if encoding is None:
- encoding = GISEncoding.train(train_toks, labels=labels)
- if not hasattr(encoding, "C"):
- raise TypeError(
- "The GIS algorithm requires an encoding that "
- "defines C (e.g., GISEncoding)."
- )
- # Cinv is the inverse of the sum of each joint feature vector.
- # This controls the learning rate: higher Cinv (or lower C) gives
- # faster learning.
- Cinv = 1.0 / encoding.C
- # Count how many times each feature occurs in the training data.
- empirical_fcount = calculate_empirical_fcount(train_toks, encoding)
- # Check for any features that are not attested in train_toks.
- unattested = set(numpy.nonzero(empirical_fcount == 0)[0])
- # Build the classifier. Start with weight=0 for each attested
- # feature, and weight=-infinity for each unattested feature.
- weights = numpy.zeros(len(empirical_fcount), "d")
- for fid in unattested:
- weights[fid] = numpy.NINF
- classifier = ConditionalExponentialClassifier(encoding, weights)
- # Take the log of the empirical fcount.
- log_empirical_fcount = numpy.log2(empirical_fcount)
- del empirical_fcount
- if trace > 0:
- print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
- if trace > 2:
- print()
- print(" Iteration Log Likelihood Accuracy")
- print(" ---------------------------------------")
- # Train the classifier.
- try:
- while True:
- if trace > 2:
- ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
- acc = cutoffchecker.acc or accuracy(classifier, train_toks)
- iternum = cutoffchecker.iter
- print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
- # Use the model to estimate the number of times each
- # feature should occur in the training data.
- estimated_fcount = calculate_estimated_fcount(
- classifier, train_toks, encoding
- )
- # Take the log of estimated fcount (avoid taking log(0).)
- for fid in unattested:
- estimated_fcount[fid] += 1
- log_estimated_fcount = numpy.log2(estimated_fcount)
- del estimated_fcount
- # Update the classifier weights
- weights = classifier.weights()
- weights += (log_empirical_fcount - log_estimated_fcount) * Cinv
- classifier.set_weights(weights)
- # Check the log-likelihood & accuracy cutoffs.
- if cutoffchecker.check(classifier, train_toks):
- break
- except KeyboardInterrupt:
- print(" Training stopped: keyboard interrupt")
- except:
- raise
- if trace > 2:
- ll = log_likelihood(classifier, train_toks)
- acc = accuracy(classifier, train_toks)
- print(" Final %14.5f %9.3f" % (ll, acc))
- # Return the classifier.
- return classifier
- def calculate_empirical_fcount(train_toks, encoding):
- fcount = numpy.zeros(encoding.length(), "d")
- for tok, label in train_toks:
- for (index, val) in encoding.encode(tok, label):
- fcount[index] += val
- return fcount
- def calculate_estimated_fcount(classifier, train_toks, encoding):
- fcount = numpy.zeros(encoding.length(), "d")
- for tok, label in train_toks:
- pdist = classifier.prob_classify(tok)
- for label in pdist.samples():
- prob = pdist.prob(label)
- for (fid, fval) in encoding.encode(tok, label):
- fcount[fid] += prob * fval
- return fcount
- ######################################################################
- # { Classifier Trainer: Improved Iterative Scaling
- ######################################################################
- def train_maxent_classifier_with_iis(
- train_toks, trace=3, encoding=None, labels=None, **cutoffs
- ):
- """
- Train a new ``ConditionalExponentialClassifier``, using the given
- training samples, using the Improved Iterative Scaling algorithm.
- This ``ConditionalExponentialClassifier`` will encode the model
- that maximizes entropy from all the models that are empirically
- consistent with ``train_toks``.
- :see: ``train_maxent_classifier()`` for parameter descriptions.
- """
- cutoffs.setdefault("max_iter", 100)
- cutoffchecker = CutoffChecker(cutoffs)
- # Construct an encoding from the training data.
- if encoding is None:
- encoding = BinaryMaxentFeatureEncoding.train(train_toks, labels=labels)
- # Count how many times each feature occurs in the training data.
- empirical_ffreq = calculate_empirical_fcount(train_toks, encoding) / len(train_toks)
- # Find the nf map, and related variables nfarray and nfident.
- # nf is the sum of the features for a given labeled text.
- # nfmap compresses this sparse set of values to a dense list.
- # nfarray performs the reverse operation. nfident is
- # nfarray multiplied by an identity matrix.
- nfmap = calculate_nfmap(train_toks, encoding)
- nfarray = numpy.array(sorted(nfmap, key=nfmap.__getitem__), "d")
- nftranspose = numpy.reshape(nfarray, (len(nfarray), 1))
- # Check for any features that are not attested in train_toks.
- unattested = set(numpy.nonzero(empirical_ffreq == 0)[0])
- # Build the classifier. Start with weight=0 for each attested
- # feature, and weight=-infinity for each unattested feature.
- weights = numpy.zeros(len(empirical_ffreq), "d")
- for fid in unattested:
- weights[fid] = numpy.NINF
- classifier = ConditionalExponentialClassifier(encoding, weights)
- if trace > 0:
- print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
- if trace > 2:
- print()
- print(" Iteration Log Likelihood Accuracy")
- print(" ---------------------------------------")
- # Train the classifier.
- try:
- while True:
- if trace > 2:
- ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
- acc = cutoffchecker.acc or accuracy(classifier, train_toks)
- iternum = cutoffchecker.iter
- print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
- # Calculate the deltas for this iteration, using Newton's method.
- deltas = calculate_deltas(
- train_toks,
- classifier,
- unattested,
- empirical_ffreq,
- nfmap,
- nfarray,
- nftranspose,
- encoding,
- )
- # Use the deltas to update our weights.
- weights = classifier.weights()
- weights += deltas
- classifier.set_weights(weights)
- # Check the log-likelihood & accuracy cutoffs.
- if cutoffchecker.check(classifier, train_toks):
- break
- except KeyboardInterrupt:
- print(" Training stopped: keyboard interrupt")
- except:
- raise
- if trace > 2:
- ll = log_likelihood(classifier, train_toks)
- acc = accuracy(classifier, train_toks)
- print(" Final %14.5f %9.3f" % (ll, acc))
- # Return the classifier.
- return classifier
- def calculate_nfmap(train_toks, encoding):
- """
- Construct a map that can be used to compress ``nf`` (which is
- typically sparse).
- *nf(feature_vector)* is the sum of the feature values for
- *feature_vector*.
- This represents the number of features that are active for a
- given labeled text. This method finds all values of *nf(t)*
- that are attested for at least one token in the given list of
- training tokens; and constructs a dictionary mapping these
- attested values to a continuous range *0...N*. For example,
- if the only values of *nf()* that were attested were 3, 5, and
- 7, then ``_nfmap`` might return the dictionary ``{3:0, 5:1, 7:2}``.
- :return: A map that can be used to compress ``nf`` to a dense
- vector.
- :rtype: dict(int -> int)
- """
- # Map from nf to indices. This allows us to use smaller arrays.
- nfset = set()
- for tok, _ in train_toks:
- for label in encoding.labels():
- nfset.add(sum(val for (id, val) in encoding.encode(tok, label)))
- return dict((nf, i) for (i, nf) in enumerate(nfset))
- def calculate_deltas(
- train_toks,
- classifier,
- unattested,
- ffreq_empirical,
- nfmap,
- nfarray,
- nftranspose,
- encoding,
- ):
- """
- Calculate the update values for the classifier weights for
- this iteration of IIS. These update weights are the value of
- ``delta`` that solves the equation::
- ffreq_empirical[i]
- =
- SUM[fs,l] (classifier.prob_classify(fs).prob(l) *
- feature_vector(fs,l)[i] *
- exp(delta[i] * nf(feature_vector(fs,l))))
- Where:
- - *(fs,l)* is a (featureset, label) tuple from ``train_toks``
- - *feature_vector(fs,l)* = ``encoding.encode(fs,l)``
- - *nf(vector)* = ``sum([val for (id,val) in vector])``
- This method uses Newton's method to solve this equation for
- *delta[i]*. In particular, it starts with a guess of
- ``delta[i]`` = 1; and iteratively updates ``delta`` with:
- | delta[i] -= (ffreq_empirical[i] - sum1[i])/(-sum2[i])
- until convergence, where *sum1* and *sum2* are defined as:
- | sum1[i](delta) = SUM[fs,l] f[i](fs,l,delta)
- | sum2[i](delta) = SUM[fs,l] (f[i](fs,l,delta).nf(feature_vector(fs,l)))
- | f[i](fs,l,delta) = (classifier.prob_classify(fs).prob(l) .
- | feature_vector(fs,l)[i] .
- | exp(delta[i] . nf(feature_vector(fs,l))))
- Note that *sum1* and *sum2* depend on ``delta``; so they need
- to be re-computed each iteration.
- The variables ``nfmap``, ``nfarray``, and ``nftranspose`` are
- used to generate a dense encoding for *nf(ltext)*. This
- allows ``_deltas`` to calculate *sum1* and *sum2* using
- matrices, which yields a significant performance improvement.
- :param train_toks: The set of training tokens.
- :type train_toks: list(tuple(dict, str))
- :param classifier: The current classifier.
- :type classifier: ClassifierI
- :param ffreq_empirical: An array containing the empirical
- frequency for each feature. The *i*\ th element of this
- array is the empirical frequency for feature *i*.
- :type ffreq_empirical: sequence of float
- :param unattested: An array that is 1 for features that are
- not attested in the training data; and 0 for features that
- are attested. In other words, ``unattested[i]==0`` iff
- ``ffreq_empirical[i]==0``.
- :type unattested: sequence of int
- :param nfmap: A map that can be used to compress ``nf`` to a dense
- vector.
- :type nfmap: dict(int -> int)
- :param nfarray: An array that can be used to uncompress ``nf``
- from a dense vector.
- :type nfarray: array(float)
- :param nftranspose: The transpose of ``nfarray``
- :type nftranspose: array(float)
- """
- # These parameters control when we decide that we've
- # converged. It probably should be possible to set these
- # manually, via keyword arguments to train.
- NEWTON_CONVERGE = 1e-12
- MAX_NEWTON = 300
- deltas = numpy.ones(encoding.length(), "d")
- # Precompute the A matrix:
- # A[nf][id] = sum ( p(fs) * p(label|fs) * f(fs,label) )
- # over all label,fs s.t. num_features[label,fs]=nf
- A = numpy.zeros((len(nfmap), encoding.length()), "d")
- for tok, label in train_toks:
- dist = classifier.prob_classify(tok)
- for label in encoding.labels():
- # Generate the feature vector
- feature_vector = encoding.encode(tok, label)
- # Find the number of active features
- nf = sum(val for (id, val) in feature_vector)
- # Update the A matrix
- for (id, val) in feature_vector:
- A[nfmap[nf], id] += dist.prob(label) * val
- A /= len(train_toks)
- # Iteratively solve for delta. Use the following variables:
- # - nf_delta[x][y] = nfarray[x] * delta[y]
- # - exp_nf_delta[x][y] = exp(nf[x] * delta[y])
- # - nf_exp_nf_delta[x][y] = nf[x] * exp(nf[x] * delta[y])
- # - sum1[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
- # exp(delta[i]nf)
- # - sum2[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
- # nf exp(delta[i]nf)
- for rangenum in range(MAX_NEWTON):
- nf_delta = numpy.outer(nfarray, deltas)
- exp_nf_delta = 2 ** nf_delta
- nf_exp_nf_delta = nftranspose * exp_nf_delta
- sum1 = numpy.sum(exp_nf_delta * A, axis=0)
- sum2 = numpy.sum(nf_exp_nf_delta * A, axis=0)
- # Avoid division by zero.
- for fid in unattested:
- sum2[fid] += 1
- # Update the deltas.
- deltas -= (ffreq_empirical - sum1) / -sum2
- # We can stop once we converge.
- n_error = numpy.sum(abs((ffreq_empirical - sum1))) / numpy.sum(abs(deltas))
- if n_error < NEWTON_CONVERGE:
- return deltas
- return deltas
- ######################################################################
- # { Classifier Trainer: megam
- ######################################################################
- # [xx] possible extension: add support for using implicit file format;
- # this would need to put requirements on what encoding is used. But
- # we may need this for other maxent classifier trainers that require
- # implicit formats anyway.
- def train_maxent_classifier_with_megam(
- train_toks, trace=3, encoding=None, labels=None, gaussian_prior_sigma=0, **kwargs
- ):
- """
- Train a new ``ConditionalExponentialClassifier``, using the given
- training samples, using the external ``megam`` library. This
- ``ConditionalExponentialClassifier`` will encode the model that
- maximizes entropy from all the models that are empirically
- consistent with ``train_toks``.
- :see: ``train_maxent_classifier()`` for parameter descriptions.
- :see: ``nltk.classify.megam``
- """
- explicit = True
- bernoulli = True
- if "explicit" in kwargs:
- explicit = kwargs["explicit"]
- if "bernoulli" in kwargs:
- bernoulli = kwargs["bernoulli"]
- # Construct an encoding from the training data.
- if encoding is None:
- # Count cutoff can also be controlled by megam with the -minfc
- # option. Not sure where the best place for it is.
- count_cutoff = kwargs.get("count_cutoff", 0)
- encoding = BinaryMaxentFeatureEncoding.train(
- train_toks, count_cutoff, labels=labels, alwayson_features=True
- )
- elif labels is not None:
- raise ValueError("Specify encoding or labels, not both")
- # Write a training file for megam.
- try:
- fd, trainfile_name = tempfile.mkstemp(prefix="nltk-")
- with open(trainfile_name, "w") as trainfile:
- write_megam_file(
- train_toks, encoding, trainfile, explicit=explicit, bernoulli=bernoulli
- )
- os.close(fd)
- except (OSError, IOError, ValueError) as e:
- raise ValueError("Error while creating megam training file: %s" % e)
- # Run megam on the training file.
- options = []
- options += ["-nobias", "-repeat", "10"]
- if explicit:
- options += ["-explicit"]
- if not bernoulli:
- options += ["-fvals"]
- if gaussian_prior_sigma:
- # Lambda is just the precision of the Gaussian prior, i.e. it's the
- # inverse variance, so the parameter conversion is 1.0/sigma**2.
- # See http://www.umiacs.umd.edu/~hal/docs/daume04cg-bfgs.pdf.
- inv_variance = 1.0 / gaussian_prior_sigma ** 2
- else:
- inv_variance = 0
- options += ["-lambda", "%.2f" % inv_variance, "-tune"]
- if trace < 3:
- options += ["-quiet"]
- if "max_iter" in kwargs:
- options += ["-maxi", "%s" % kwargs["max_iter"]]
- if "ll_delta" in kwargs:
- # [xx] this is actually a perplexity delta, not a log
- # likelihood delta
- options += ["-dpp", "%s" % abs(kwargs["ll_delta"])]
- if hasattr(encoding, "cost"):
- options += ["-multilabel"] # each possible la
- options += ["multiclass", trainfile_name]
- stdout = call_megam(options)
- # print('./megam_i686.opt ', ' '.join(options))
- # Delete the training file
- try:
- os.remove(trainfile_name)
- except (OSError, IOError) as e:
- print("Warning: unable to delete %s: %s" % (trainfile_name, e))
- # Parse the generated weight vector.
- weights = parse_megam_weights(stdout, encoding.length(), explicit)
- # Convert from base-e to base-2 weights.
- weights *= numpy.log2(numpy.e)
- # Build the classifier
- return MaxentClassifier(encoding, weights)
- ######################################################################
- # { Classifier Trainer: tadm
- ######################################################################
- class TadmMaxentClassifier(MaxentClassifier):
- @classmethod
- def train(cls, train_toks, **kwargs):
- algorithm = kwargs.get("algorithm", "tao_lmvm")
- trace = kwargs.get("trace", 3)
- encoding = kwargs.get("encoding", None)
- labels = kwargs.get("labels", None)
- sigma = kwargs.get("gaussian_prior_sigma", 0)
- count_cutoff = kwargs.get("count_cutoff", 0)
- max_iter = kwargs.get("max_iter")
- ll_delta = kwargs.get("min_lldelta")
- # Construct an encoding from the training data.
- if not encoding:
- encoding = TadmEventMaxentFeatureEncoding.train(
- train_toks, count_cutoff, labels=labels
- )
- trainfile_fd, trainfile_name = tempfile.mkstemp(
- prefix="nltk-tadm-events-", suffix=".gz"
- )
- weightfile_fd, weightfile_name = tempfile.mkstemp(prefix="nltk-tadm-weights-")
- trainfile = gzip_open_unicode(trainfile_name, "w")
- write_tadm_file(train_toks, encoding, trainfile)
- trainfile.close()
- options = []
- options.extend(["-monitor"])
- options.extend(["-method", algorithm])
- if sigma:
- options.extend(["-l2", "%.6f" % sigma ** 2])
- if max_iter:
- options.extend(["-max_it", "%d" % max_iter])
- if ll_delta:
- options.extend(["-fatol", "%.6f" % abs(ll_delta)])
- options.extend(["-events_in", trainfile_name])
- options.extend(["-params_out", weightfile_name])
- if trace < 3:
- options.extend(["2>&1"])
- else:
- options.extend(["-summary"])
- call_tadm(options)
- with open(weightfile_name, "r") as weightfile:
- weights = parse_tadm_weights(weightfile)
- os.remove(trainfile_name)
- os.remove(weightfile_name)
- # Convert from base-e to base-2 weights.
- weights *= numpy.log2(numpy.e)
- # Build the classifier
- return cls(encoding, weights)
- ######################################################################
- # { Demo
- ######################################################################
- def demo():
- from nltk.classify.util import names_demo
- classifier = names_demo(MaxentClassifier.train)
- if __name__ == "__main__":
- demo()
|