| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 |
- # -*- coding: utf-8 -*-
- #
- # Natural Language Toolkit: The ISRI Arabic Stemmer
- #
- # Copyright (C) 2001-2020 NLTK Proejct
- # Algorithm: Kazem Taghva, Rania Elkhoury, and Jeffrey Coombs (2005)
- # Author: Hosam Algasaier <hosam_hme@yahoo.com>
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- """
- ISRI Arabic Stemmer
- The algorithm for this stemmer is described in:
- Taghva, K., Elkoury, R., and Coombs, J. 2005. Arabic Stemming without a root dictionary.
- Information Science Research Institute. University of Nevada, Las Vegas, USA.
- The Information Science Research Institute’s (ISRI) Arabic stemmer shares many features
- with the Khoja stemmer. However, the main difference is that ISRI stemmer does not use root
- dictionary. Also, if a root is not found, ISRI stemmer returned normalized form, rather than
- returning the original unmodified word.
- Additional adjustments were made to improve the algorithm:
- 1- Adding 60 stop words.
- 2- Adding the pattern (تفاعيل) to ISRI pattern set.
- 3- The step 2 in the original algorithm was normalizing all hamza. This step is discarded because it
- increases the word ambiguities and changes the original root.
- """
- import re
- from nltk.stem.api import StemmerI
- class ISRIStemmer(StemmerI):
- """
- ISRI Arabic stemmer based on algorithm: Arabic Stemming without a root dictionary.
- Information Science Research Institute. University of Nevada, Las Vegas, USA.
- A few minor modifications have been made to ISRI basic algorithm.
- See the source code of this module for more information.
- isri.stem(token) returns Arabic root for the given token.
- The ISRI Stemmer requires that all tokens have Unicode string types.
- If you use Python IDLE on Arabic Windows you have to decode text first
- using Arabic '1256' coding.
- """
- def __init__(self):
- # length three prefixes
- self.p3 = [
- "\u0643\u0627\u0644",
- "\u0628\u0627\u0644",
- "\u0648\u0644\u0644",
- "\u0648\u0627\u0644",
- ]
- # length two prefixes
- self.p2 = ["\u0627\u0644", "\u0644\u0644"]
- # length one prefixes
- self.p1 = [
- "\u0644",
- "\u0628",
- "\u0641",
- "\u0633",
- "\u0648",
- "\u064a",
- "\u062a",
- "\u0646",
- "\u0627",
- ]
- # length three suffixes
- self.s3 = [
- "\u062a\u0645\u0644",
- "\u0647\u0645\u0644",
- "\u062a\u0627\u0646",
- "\u062a\u064a\u0646",
- "\u0643\u0645\u0644",
- ]
- # length two suffixes
- self.s2 = [
- "\u0648\u0646",
- "\u0627\u062a",
- "\u0627\u0646",
- "\u064a\u0646",
- "\u062a\u0646",
- "\u0643\u0645",
- "\u0647\u0646",
- "\u0646\u0627",
- "\u064a\u0627",
- "\u0647\u0627",
- "\u062a\u0645",
- "\u0643\u0646",
- "\u0646\u064a",
- "\u0648\u0627",
- "\u0645\u0627",
- "\u0647\u0645",
- ]
- # length one suffixes
- self.s1 = ["\u0629", "\u0647", "\u064a", "\u0643", "\u062a", "\u0627", "\u0646"]
- # groups of length four patterns
- self.pr4 = {
- 0: ["\u0645"],
- 1: ["\u0627"],
- 2: ["\u0627", "\u0648", "\u064A"],
- 3: ["\u0629"],
- }
- # Groups of length five patterns and length three roots
- self.pr53 = {
- 0: ["\u0627", "\u062a"],
- 1: ["\u0627", "\u064a", "\u0648"],
- 2: ["\u0627", "\u062a", "\u0645"],
- 3: ["\u0645", "\u064a", "\u062a"],
- 4: ["\u0645", "\u062a"],
- 5: ["\u0627", "\u0648"],
- 6: ["\u0627", "\u0645"],
- }
- self.re_short_vowels = re.compile(r"[\u064B-\u0652]")
- self.re_hamza = re.compile(r"[\u0621\u0624\u0626]")
- self.re_initial_hamza = re.compile(r"^[\u0622\u0623\u0625]")
- self.stop_words = [
- "\u064a\u0643\u0648\u0646",
- "\u0648\u0644\u064a\u0633",
- "\u0648\u0643\u0627\u0646",
- "\u0643\u0630\u0644\u0643",
- "\u0627\u0644\u062a\u064a",
- "\u0648\u0628\u064a\u0646",
- "\u0639\u0644\u064a\u0647\u0627",
- "\u0645\u0633\u0627\u0621",
- "\u0627\u0644\u0630\u064a",
- "\u0648\u0643\u0627\u0646\u062a",
- "\u0648\u0644\u0643\u0646",
- "\u0648\u0627\u0644\u062a\u064a",
- "\u062a\u0643\u0648\u0646",
- "\u0627\u0644\u064a\u0648\u0645",
- "\u0627\u0644\u0644\u0630\u064a\u0646",
- "\u0639\u0644\u064a\u0647",
- "\u0643\u0627\u0646\u062a",
- "\u0644\u0630\u0644\u0643",
- "\u0623\u0645\u0627\u0645",
- "\u0647\u0646\u0627\u0643",
- "\u0645\u0646\u0647\u0627",
- "\u0645\u0627\u0632\u0627\u0644",
- "\u0644\u0627\u0632\u0627\u0644",
- "\u0644\u0627\u064a\u0632\u0627\u0644",
- "\u0645\u0627\u064a\u0632\u0627\u0644",
- "\u0627\u0635\u0628\u062d",
- "\u0623\u0635\u0628\u062d",
- "\u0623\u0645\u0633\u0649",
- "\u0627\u0645\u0633\u0649",
- "\u0623\u0636\u062d\u0649",
- "\u0627\u0636\u062d\u0649",
- "\u0645\u0627\u0628\u0631\u062d",
- "\u0645\u0627\u0641\u062a\u0626",
- "\u0645\u0627\u0627\u0646\u0641\u0643",
- "\u0644\u0627\u0633\u064a\u0645\u0627",
- "\u0648\u0644\u0627\u064a\u0632\u0627\u0644",
- "\u0627\u0644\u062d\u0627\u0644\u064a",
- "\u0627\u0644\u064a\u0647\u0627",
- "\u0627\u0644\u0630\u064a\u0646",
- "\u0641\u0627\u0646\u0647",
- "\u0648\u0627\u0644\u0630\u064a",
- "\u0648\u0647\u0630\u0627",
- "\u0644\u0647\u0630\u0627",
- "\u0641\u0643\u0627\u0646",
- "\u0633\u062a\u0643\u0648\u0646",
- "\u0627\u0644\u064a\u0647",
- "\u064a\u0645\u0643\u0646",
- "\u0628\u0647\u0630\u0627",
- "\u0627\u0644\u0630\u0649",
- ]
- def stem(self, token):
- """
- Stemming a word token using the ISRI stemmer.
- """
- token = self.norm(
- token, 1
- ) # remove diacritics which representing Arabic short vowels
- if token in self.stop_words:
- return token # exclude stop words from being processed
- token = self.pre32(
- token
- ) # remove length three and length two prefixes in this order
- token = self.suf32(
- token
- ) # remove length three and length two suffixes in this order
- token = self.waw(
- token
- ) # remove connective ‘و’ if it precedes a word beginning with ‘و’
- token = self.norm(token, 2) # normalize initial hamza to bare alif
- # if 4 <= word length <= 7, then stem; otherwise, no stemming
- if len(token) == 4: # length 4 word
- token = self.pro_w4(token)
- elif len(token) == 5: # length 5 word
- token = self.pro_w53(token)
- token = self.end_w5(token)
- elif len(token) == 6: # length 6 word
- token = self.pro_w6(token)
- token = self.end_w6(token)
- elif len(token) == 7: # length 7 word
- token = self.suf1(token)
- if len(token) == 7:
- token = self.pre1(token)
- if len(token) == 6:
- token = self.pro_w6(token)
- token = self.end_w6(token)
- return token
- def norm(self, word, num=3):
- """
- normalization:
- num=1 normalize diacritics
- num=2 normalize initial hamza
- num=3 both 1&2
- """
- if num == 1:
- word = self.re_short_vowels.sub("", word)
- elif num == 2:
- word = self.re_initial_hamza.sub("\u0627", word)
- elif num == 3:
- word = self.re_short_vowels.sub("", word)
- word = self.re_initial_hamza.sub("\u0627", word)
- return word
- def pre32(self, word):
- """remove length three and length two prefixes in this order"""
- if len(word) >= 6:
- for pre3 in self.p3:
- if word.startswith(pre3):
- return word[3:]
- if len(word) >= 5:
- for pre2 in self.p2:
- if word.startswith(pre2):
- return word[2:]
- return word
- def suf32(self, word):
- """remove length three and length two suffixes in this order"""
- if len(word) >= 6:
- for suf3 in self.s3:
- if word.endswith(suf3):
- return word[:-3]
- if len(word) >= 5:
- for suf2 in self.s2:
- if word.endswith(suf2):
- return word[:-2]
- return word
- def waw(self, word):
- """remove connective ‘و’ if it precedes a word beginning with ‘و’ """
- if len(word) >= 4 and word[:2] == "\u0648\u0648":
- word = word[1:]
- return word
- def pro_w4(self, word):
- """process length four patterns and extract length three roots"""
- if word[0] in self.pr4[0]: # مفعل
- word = word[1:]
- elif word[1] in self.pr4[1]: # فاعل
- word = word[:1] + word[2:]
- elif word[2] in self.pr4[2]: # فعال - فعول - فعيل
- word = word[:2] + word[3]
- elif word[3] in self.pr4[3]: # فعلة
- word = word[:-1]
- else:
- word = self.suf1(word) # do - normalize short sufix
- if len(word) == 4:
- word = self.pre1(word) # do - normalize short prefix
- return word
- def pro_w53(self, word):
- """process length five patterns and extract length three roots"""
- if word[2] in self.pr53[0] and word[0] == "\u0627": # افتعل - افاعل
- word = word[1] + word[3:]
- elif word[3] in self.pr53[1] and word[0] == "\u0645": # مفعول - مفعال - مفعيل
- word = word[1:3] + word[4]
- elif word[0] in self.pr53[2] and word[4] == "\u0629": # مفعلة - تفعلة - افعلة
- word = word[1:4]
- elif word[0] in self.pr53[3] and word[2] == "\u062a": # مفتعل - يفتعل - تفتعل
- word = word[1] + word[3:]
- elif word[0] in self.pr53[4] and word[2] == "\u0627": # مفاعل - تفاعل
- word = word[1] + word[3:]
- elif word[2] in self.pr53[5] and word[4] == "\u0629": # فعولة - فعالة
- word = word[:2] + word[3]
- elif word[0] in self.pr53[6] and word[1] == "\u0646": # انفعل - منفعل
- word = word[2:]
- elif word[3] == "\u0627" and word[0] == "\u0627": # افعال
- word = word[1:3] + word[4]
- elif word[4] == "\u0646" and word[3] == "\u0627": # فعلان
- word = word[:3]
- elif word[3] == "\u064a" and word[0] == "\u062a": # تفعيل
- word = word[1:3] + word[4]
- elif word[3] == "\u0648" and word[1] == "\u0627": # فاعول
- word = word[0] + word[2] + word[4]
- elif word[2] == "\u0627" and word[1] == "\u0648": # فواعل
- word = word[0] + word[3:]
- elif word[3] == "\u0626" and word[2] == "\u0627": # فعائل
- word = word[:2] + word[4]
- elif word[4] == "\u0629" and word[1] == "\u0627": # فاعلة
- word = word[0] + word[2:4]
- elif word[4] == "\u064a" and word[2] == "\u0627": # فعالي
- word = word[:2] + word[3]
- else:
- word = self.suf1(word) # do - normalize short sufix
- if len(word) == 5:
- word = self.pre1(word) # do - normalize short prefix
- return word
- def pro_w54(self, word):
- """process length five patterns and extract length four roots"""
- if word[0] in self.pr53[2]: # تفعلل - افعلل - مفعلل
- word = word[1:]
- elif word[4] == "\u0629": # فعللة
- word = word[:4]
- elif word[2] == "\u0627": # فعالل
- word = word[:2] + word[3:]
- return word
- def end_w5(self, word):
- """ending step (word of length five)"""
- if len(word) == 4:
- word = self.pro_w4(word)
- elif len(word) == 5:
- word = self.pro_w54(word)
- return word
- def pro_w6(self, word):
- """process length six patterns and extract length three roots"""
- if word.startswith("\u0627\u0633\u062a") or word.startswith(
- "\u0645\u0633\u062a"
- ): # مستفعل - استفعل
- word = word[3:]
- elif (
- word[0] == "\u0645" and word[3] == "\u0627" and word[5] == "\u0629"
- ): # مفعالة
- word = word[1:3] + word[4]
- elif (
- word[0] == "\u0627" and word[2] == "\u062a" and word[4] == "\u0627"
- ): # افتعال
- word = word[1] + word[3] + word[5]
- elif (
- word[0] == "\u0627" and word[3] == "\u0648" and word[2] == word[4]
- ): # افعوعل
- word = word[1] + word[4:]
- elif (
- word[0] == "\u062a" and word[2] == "\u0627" and word[4] == "\u064a"
- ): # تفاعيل new pattern
- word = word[1] + word[3] + word[5]
- else:
- word = self.suf1(word) # do - normalize short sufix
- if len(word) == 6:
- word = self.pre1(word) # do - normalize short prefix
- return word
- def pro_w64(self, word):
- """process length six patterns and extract length four roots"""
- if word[0] == "\u0627" and word[4] == "\u0627": # افعلال
- word = word[1:4] + word[5]
- elif word.startswith("\u0645\u062a"): # متفعلل
- word = word[2:]
- return word
- def end_w6(self, word):
- """ending step (word of length six)"""
- if len(word) == 5:
- word = self.pro_w53(word)
- word = self.end_w5(word)
- elif len(word) == 6:
- word = self.pro_w64(word)
- return word
- def suf1(self, word):
- """normalize short sufix"""
- for sf1 in self.s1:
- if word.endswith(sf1):
- return word[:-1]
- return word
- def pre1(self, word):
- """normalize short prefix"""
- for sp1 in self.p1:
- if word.startswith(sp1):
- return word[1:]
- return word
|