| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- # -*- coding: utf-8 -*-
- from nltk.tag import hmm
- def _wikipedia_example_hmm():
- # Example from wikipedia
- # (http://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm)
- states = ['rain', 'no rain']
- symbols = ['umbrella', 'no umbrella']
- A = [[0.7, 0.3], [0.3, 0.7]] # transition probabilities
- B = [[0.9, 0.1], [0.2, 0.8]] # emission probabilities
- pi = [0.5, 0.5] # initial probabilities
- seq = ['umbrella', 'umbrella', 'no umbrella', 'umbrella', 'umbrella']
- seq = list(zip(seq, [None] * len(seq)))
- model = hmm._create_hmm_tagger(states, symbols, A, B, pi)
- return model, states, symbols, seq
- def test_forward_probability():
- from numpy.testing import assert_array_almost_equal
- # example from p. 385, Huang et al
- model, states, symbols = hmm._market_hmm_example()
- seq = [('up', None), ('up', None)]
- expected = [[0.35, 0.02, 0.09], [0.1792, 0.0085, 0.0357]]
- fp = 2 ** model._forward_probability(seq)
- assert_array_almost_equal(fp, expected)
- def test_forward_probability2():
- from numpy.testing import assert_array_almost_equal
- model, states, symbols, seq = _wikipedia_example_hmm()
- fp = 2 ** model._forward_probability(seq)
- # examples in wikipedia are normalized
- fp = (fp.T / fp.sum(axis=1)).T
- wikipedia_results = [
- [0.8182, 0.1818],
- [0.8834, 0.1166],
- [0.1907, 0.8093],
- [0.7308, 0.2692],
- [0.8673, 0.1327],
- ]
- assert_array_almost_equal(wikipedia_results, fp, 4)
- def test_backward_probability():
- from numpy.testing import assert_array_almost_equal
- model, states, symbols, seq = _wikipedia_example_hmm()
- bp = 2 ** model._backward_probability(seq)
- # examples in wikipedia are normalized
- bp = (bp.T / bp.sum(axis=1)).T
- wikipedia_results = [
- # Forward-backward algorithm doesn't need b0_5,
- # so .backward_probability doesn't compute it.
- # [0.6469, 0.3531],
- [0.5923, 0.4077],
- [0.3763, 0.6237],
- [0.6533, 0.3467],
- [0.6273, 0.3727],
- [0.5, 0.5],
- ]
- assert_array_almost_equal(wikipedia_results, bp, 4)
- def setup_module(module):
- from nose import SkipTest
- try:
- import numpy
- except ImportError:
- raise SkipTest("numpy is required for nltk.test.test_hmm")
|