| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # -*- coding: utf-8 -*-
- """
- Tests for IBM Model 1 training methods
- """
- import unittest
- from collections import defaultdict
- from nltk.translate import AlignedSent
- from nltk.translate import IBMModel
- from nltk.translate import IBMModel1
- from nltk.translate.ibm_model import AlignmentInfo
- class TestIBMModel1(unittest.TestCase):
- def test_set_uniform_translation_probabilities(self):
- # arrange
- corpus = [
- AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']),
- AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']),
- ]
- model1 = IBMModel1(corpus, 0)
- # act
- model1.set_uniform_probabilities(corpus)
- # assert
- # expected_prob = 1.0 / (target vocab size + 1)
- self.assertEqual(model1.translation_table['ham']['eier'], 1.0 / 3)
- self.assertEqual(model1.translation_table['eggs'][None], 1.0 / 3)
- def test_set_uniform_translation_probabilities_of_non_domain_values(self):
- # arrange
- corpus = [
- AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']),
- AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']),
- ]
- model1 = IBMModel1(corpus, 0)
- # act
- model1.set_uniform_probabilities(corpus)
- # assert
- # examine target words that are not in the training data domain
- self.assertEqual(model1.translation_table['parrot']['eier'], IBMModel.MIN_PROB)
- def test_prob_t_a_given_s(self):
- # arrange
- src_sentence = ["ich", 'esse', 'ja', 'gern', 'räucherschinken']
- trg_sentence = ['i', 'love', 'to', 'eat', 'smoked', 'ham']
- corpus = [AlignedSent(trg_sentence, src_sentence)]
- alignment_info = AlignmentInfo(
- (0, 1, 4, 0, 2, 5, 5),
- [None] + src_sentence,
- ['UNUSED'] + trg_sentence,
- None,
- )
- translation_table = defaultdict(lambda: defaultdict(float))
- translation_table['i']['ich'] = 0.98
- translation_table['love']['gern'] = 0.98
- translation_table['to'][None] = 0.98
- translation_table['eat']['esse'] = 0.98
- translation_table['smoked']['räucherschinken'] = 0.98
- translation_table['ham']['räucherschinken'] = 0.98
- model1 = IBMModel1(corpus, 0)
- model1.translation_table = translation_table
- # act
- probability = model1.prob_t_a_given_s(alignment_info)
- # assert
- lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98
- expected_probability = lexical_translation
- self.assertEqual(round(probability, 4), round(expected_probability, 4))
|