| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # -*- coding: utf-8 -*-
- """
- Tests for IBM Model 5 training methods
- """
- import unittest
- from collections import defaultdict
- from nltk.translate import AlignedSent
- from nltk.translate import IBMModel
- from nltk.translate import IBMModel4
- from nltk.translate import IBMModel5
- from nltk.translate.ibm_model import AlignmentInfo
- class TestIBMModel5(unittest.TestCase):
- def test_set_uniform_vacancy_probabilities_of_max_displacements(self):
- # arrange
- src_classes = {'schinken': 0, 'eier': 0, 'spam': 1}
- trg_classes = {'ham': 0, 'eggs': 1, 'spam': 2}
- corpus = [
- AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']),
- AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']),
- ]
- model5 = IBMModel5(corpus, 0, src_classes, trg_classes)
- # act
- model5.set_uniform_probabilities(corpus)
- # assert
- # number of vacancy difference values =
- # 2 * number of words in longest target sentence
- expected_prob = 1.0 / (2 * 4)
- # examine the boundary values for (dv, max_v, trg_class)
- self.assertEqual(model5.head_vacancy_table[4][4][0], expected_prob)
- self.assertEqual(model5.head_vacancy_table[-3][1][2], expected_prob)
- self.assertEqual(model5.non_head_vacancy_table[4][4][0], expected_prob)
- self.assertEqual(model5.non_head_vacancy_table[-3][1][2], expected_prob)
- def test_set_uniform_vacancy_probabilities_of_non_domain_values(self):
- # arrange
- src_classes = {'schinken': 0, 'eier': 0, 'spam': 1}
- trg_classes = {'ham': 0, 'eggs': 1, 'spam': 2}
- corpus = [
- AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']),
- AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']),
- ]
- model5 = IBMModel5(corpus, 0, src_classes, trg_classes)
- # act
- model5.set_uniform_probabilities(corpus)
- # assert
- # examine dv and max_v values that are not in the training data domain
- self.assertEqual(model5.head_vacancy_table[5][4][0], IBMModel.MIN_PROB)
- self.assertEqual(model5.head_vacancy_table[-4][1][2], IBMModel.MIN_PROB)
- self.assertEqual(model5.head_vacancy_table[4][0][0], IBMModel.MIN_PROB)
- self.assertEqual(model5.non_head_vacancy_table[5][4][0], IBMModel.MIN_PROB)
- self.assertEqual(model5.non_head_vacancy_table[-4][1][2], IBMModel.MIN_PROB)
- def test_prob_t_a_given_s(self):
- # arrange
- src_sentence = ["ich", 'esse', 'ja', 'gern', 'räucherschinken']
- trg_sentence = ['i', 'love', 'to', 'eat', 'smoked', 'ham']
- src_classes = {'räucherschinken': 0, 'ja': 1, 'ich': 2, 'esse': 3, 'gern': 4}
- trg_classes = {'ham': 0, 'smoked': 1, 'i': 3, 'love': 4, 'to': 2, 'eat': 4}
- corpus = [AlignedSent(trg_sentence, src_sentence)]
- alignment_info = AlignmentInfo(
- (0, 1, 4, 0, 2, 5, 5),
- [None] + src_sentence,
- ['UNUSED'] + trg_sentence,
- [[3], [1], [4], [], [2], [5, 6]],
- )
- head_vacancy_table = defaultdict(
- lambda: defaultdict(lambda: defaultdict(float))
- )
- head_vacancy_table[1 - 0][6][3] = 0.97 # ich -> i
- head_vacancy_table[3 - 0][5][4] = 0.97 # esse -> eat
- head_vacancy_table[1 - 2][4][4] = 0.97 # gern -> love
- head_vacancy_table[2 - 0][2][1] = 0.97 # räucherschinken -> smoked
- non_head_vacancy_table = defaultdict(
- lambda: defaultdict(lambda: defaultdict(float))
- )
- non_head_vacancy_table[1 - 0][1][0] = 0.96 # räucherschinken -> ham
- translation_table = defaultdict(lambda: defaultdict(float))
- translation_table['i']['ich'] = 0.98
- translation_table['love']['gern'] = 0.98
- translation_table['to'][None] = 0.98
- translation_table['eat']['esse'] = 0.98
- translation_table['smoked']['räucherschinken'] = 0.98
- translation_table['ham']['räucherschinken'] = 0.98
- fertility_table = defaultdict(lambda: defaultdict(float))
- fertility_table[1]['ich'] = 0.99
- fertility_table[1]['esse'] = 0.99
- fertility_table[0]['ja'] = 0.99
- fertility_table[1]['gern'] = 0.99
- fertility_table[2]['räucherschinken'] = 0.999
- fertility_table[1][None] = 0.99
- probabilities = {
- 'p1': 0.167,
- 'translation_table': translation_table,
- 'fertility_table': fertility_table,
- 'head_vacancy_table': head_vacancy_table,
- 'non_head_vacancy_table': non_head_vacancy_table,
- 'head_distortion_table': None,
- 'non_head_distortion_table': None,
- 'alignment_table': None,
- }
- model5 = IBMModel5(corpus, 0, src_classes, trg_classes, probabilities)
- # act
- probability = model5.prob_t_a_given_s(alignment_info)
- # assert
- null_generation = 5 * pow(0.167, 1) * pow(0.833, 4)
- fertility = 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 2 * 0.999
- lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98
- vacancy = 0.97 * 0.97 * 1 * 0.97 * 0.97 * 0.96
- expected_probability = (
- null_generation * fertility * lexical_translation * vacancy
- )
- self.assertEqual(round(probability, 4), round(expected_probability, 4))
- def test_prune(self):
- # arrange
- alignment_infos = [
- AlignmentInfo((1, 1), None, None, None),
- AlignmentInfo((1, 2), None, None, None),
- AlignmentInfo((2, 1), None, None, None),
- AlignmentInfo((2, 2), None, None, None),
- AlignmentInfo((0, 0), None, None, None),
- ]
- min_factor = IBMModel5.MIN_SCORE_FACTOR
- best_score = 0.9
- scores = {
- (1, 1): min(min_factor * 1.5, 1) * best_score, # above threshold
- (1, 2): best_score,
- (2, 1): min_factor * best_score, # at threshold
- (2, 2): min_factor * best_score * 0.5, # low score
- (0, 0): min(min_factor * 1.1, 1) * 1.2, # above threshold
- }
- corpus = [AlignedSent(['a'], ['b'])]
- original_prob_function = IBMModel4.model4_prob_t_a_given_s
- # mock static method
- IBMModel4.model4_prob_t_a_given_s = staticmethod(
- lambda a, model: scores[a.alignment]
- )
- model5 = IBMModel5(corpus, 0, None, None)
- # act
- pruned_alignments = model5.prune(alignment_infos)
- # assert
- self.assertEqual(len(pruned_alignments), 3)
- # restore static method
- IBMModel4.model4_prob_t_a_given_s = original_prob_function
|