| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- # -*- coding: utf-8 -*-
- """
- Tests for common methods of IBM translation models
- """
- import unittest
- from collections import defaultdict
- from nltk.translate import AlignedSent
- from nltk.translate import IBMModel
- from nltk.translate.ibm_model import AlignmentInfo
- class TestIBMModel(unittest.TestCase):
- __TEST_SRC_SENTENCE = ["j'", 'aime', 'bien', 'jambon']
- __TEST_TRG_SENTENCE = ['i', 'love', 'ham']
- def test_vocabularies_are_initialized(self):
- parallel_corpora = [
- AlignedSent(['one', 'two', 'three', 'four'], ['un', 'deux', 'trois']),
- AlignedSent(['five', 'one', 'six'], ['quatre', 'cinq', 'six']),
- AlignedSent([], ['sept']),
- ]
- ibm_model = IBMModel(parallel_corpora)
- self.assertEqual(len(ibm_model.src_vocab), 8)
- self.assertEqual(len(ibm_model.trg_vocab), 6)
- def test_vocabularies_are_initialized_even_with_empty_corpora(self):
- parallel_corpora = []
- ibm_model = IBMModel(parallel_corpora)
- self.assertEqual(len(ibm_model.src_vocab), 1) # addition of NULL token
- self.assertEqual(len(ibm_model.trg_vocab), 0)
- def test_best_model2_alignment(self):
- # arrange
- sentence_pair = AlignedSent(
- TestIBMModel.__TEST_TRG_SENTENCE, TestIBMModel.__TEST_SRC_SENTENCE
- )
- # None and 'bien' have zero fertility
- translation_table = {
- 'i': {"j'": 0.9, 'aime': 0.05, 'bien': 0.02, 'jambon': 0.03, None: 0},
- 'love': {"j'": 0.05, 'aime': 0.9, 'bien': 0.01, 'jambon': 0.01, None: 0.03},
- 'ham': {"j'": 0, 'aime': 0.01, 'bien': 0, 'jambon': 0.99, None: 0},
- }
- alignment_table = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.2)))
- )
- ibm_model = IBMModel([])
- ibm_model.translation_table = translation_table
- ibm_model.alignment_table = alignment_table
- # act
- a_info = ibm_model.best_model2_alignment(sentence_pair)
- # assert
- self.assertEqual(a_info.alignment[1:], (1, 2, 4)) # 0th element unused
- self.assertEqual(a_info.cepts, [[], [1], [2], [], [3]])
- def test_best_model2_alignment_does_not_change_pegged_alignment(self):
- # arrange
- sentence_pair = AlignedSent(
- TestIBMModel.__TEST_TRG_SENTENCE, TestIBMModel.__TEST_SRC_SENTENCE
- )
- translation_table = {
- 'i': {"j'": 0.9, 'aime': 0.05, 'bien': 0.02, 'jambon': 0.03, None: 0},
- 'love': {"j'": 0.05, 'aime': 0.9, 'bien': 0.01, 'jambon': 0.01, None: 0.03},
- 'ham': {"j'": 0, 'aime': 0.01, 'bien': 0, 'jambon': 0.99, None: 0},
- }
- alignment_table = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.2)))
- )
- ibm_model = IBMModel([])
- ibm_model.translation_table = translation_table
- ibm_model.alignment_table = alignment_table
- # act: force 'love' to be pegged to 'jambon'
- a_info = ibm_model.best_model2_alignment(sentence_pair, 2, 4)
- # assert
- self.assertEqual(a_info.alignment[1:], (1, 4, 4))
- self.assertEqual(a_info.cepts, [[], [1], [], [], [2, 3]])
- def test_best_model2_alignment_handles_fertile_words(self):
- # arrange
- sentence_pair = AlignedSent(
- ['i', 'really', ',', 'really', 'love', 'ham'],
- TestIBMModel.__TEST_SRC_SENTENCE,
- )
- # 'bien' produces 2 target words: 'really' and another 'really'
- translation_table = {
- 'i': {"j'": 0.9, 'aime': 0.05, 'bien': 0.02, 'jambon': 0.03, None: 0},
- 'really': {"j'": 0, 'aime': 0, 'bien': 0.9, 'jambon': 0.01, None: 0.09},
- ',': {"j'": 0, 'aime': 0, 'bien': 0.3, 'jambon': 0, None: 0.7},
- 'love': {"j'": 0.05, 'aime': 0.9, 'bien': 0.01, 'jambon': 0.01, None: 0.03},
- 'ham': {"j'": 0, 'aime': 0.01, 'bien': 0, 'jambon': 0.99, None: 0},
- }
- alignment_table = defaultdict(
- lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.2)))
- )
- ibm_model = IBMModel([])
- ibm_model.translation_table = translation_table
- ibm_model.alignment_table = alignment_table
- # act
- a_info = ibm_model.best_model2_alignment(sentence_pair)
- # assert
- self.assertEqual(a_info.alignment[1:], (1, 3, 0, 3, 2, 4))
- self.assertEqual(a_info.cepts, [[3], [1], [5], [2, 4], [6]])
- def test_best_model2_alignment_handles_empty_src_sentence(self):
- # arrange
- sentence_pair = AlignedSent(TestIBMModel.__TEST_TRG_SENTENCE, [])
- ibm_model = IBMModel([])
- # act
- a_info = ibm_model.best_model2_alignment(sentence_pair)
- # assert
- self.assertEqual(a_info.alignment[1:], (0, 0, 0))
- self.assertEqual(a_info.cepts, [[1, 2, 3]])
- def test_best_model2_alignment_handles_empty_trg_sentence(self):
- # arrange
- sentence_pair = AlignedSent([], TestIBMModel.__TEST_SRC_SENTENCE)
- ibm_model = IBMModel([])
- # act
- a_info = ibm_model.best_model2_alignment(sentence_pair)
- # assert
- self.assertEqual(a_info.alignment[1:], ())
- self.assertEqual(a_info.cepts, [[], [], [], [], []])
- def test_neighboring_finds_neighbor_alignments(self):
- # arrange
- a_info = AlignmentInfo(
- (0, 3, 2),
- (None, 'des', 'œufs', 'verts'),
- ('UNUSED', 'green', 'eggs'),
- [[], [], [2], [1]],
- )
- ibm_model = IBMModel([])
- # act
- neighbors = ibm_model.neighboring(a_info)
- # assert
- neighbor_alignments = set()
- for neighbor in neighbors:
- neighbor_alignments.add(neighbor.alignment)
- expected_alignments = set(
- [
- # moves
- (0, 0, 2),
- (0, 1, 2),
- (0, 2, 2),
- (0, 3, 0),
- (0, 3, 1),
- (0, 3, 3),
- # swaps
- (0, 2, 3),
- # original alignment
- (0, 3, 2),
- ]
- )
- self.assertEqual(neighbor_alignments, expected_alignments)
- def test_neighboring_sets_neighbor_alignment_info(self):
- # arrange
- a_info = AlignmentInfo(
- (0, 3, 2),
- (None, 'des', 'œufs', 'verts'),
- ('UNUSED', 'green', 'eggs'),
- [[], [], [2], [1]],
- )
- ibm_model = IBMModel([])
- # act
- neighbors = ibm_model.neighboring(a_info)
- # assert: select a few particular alignments
- for neighbor in neighbors:
- if neighbor.alignment == (0, 2, 2):
- moved_alignment = neighbor
- elif neighbor.alignment == (0, 3, 2):
- swapped_alignment = neighbor
- self.assertEqual(moved_alignment.cepts, [[], [], [1, 2], []])
- self.assertEqual(swapped_alignment.cepts, [[], [], [2], [1]])
- def test_neighboring_returns_neighbors_with_pegged_alignment(self):
- # arrange
- a_info = AlignmentInfo(
- (0, 3, 2),
- (None, 'des', 'œufs', 'verts'),
- ('UNUSED', 'green', 'eggs'),
- [[], [], [2], [1]],
- )
- ibm_model = IBMModel([])
- # act: peg 'eggs' to align with 'œufs'
- neighbors = ibm_model.neighboring(a_info, 2)
- # assert
- neighbor_alignments = set()
- for neighbor in neighbors:
- neighbor_alignments.add(neighbor.alignment)
- expected_alignments = set(
- [
- # moves
- (0, 0, 2),
- (0, 1, 2),
- (0, 2, 2),
- # no swaps
- # original alignment
- (0, 3, 2),
- ]
- )
- self.assertEqual(neighbor_alignments, expected_alignments)
- def test_hillclimb(self):
- # arrange
- initial_alignment = AlignmentInfo((0, 3, 2), None, None, None)
- def neighboring_mock(a, j):
- if a.alignment == (0, 3, 2):
- return set(
- [
- AlignmentInfo((0, 2, 2), None, None, None),
- AlignmentInfo((0, 1, 1), None, None, None),
- ]
- )
- elif a.alignment == (0, 2, 2):
- return set(
- [
- AlignmentInfo((0, 3, 3), None, None, None),
- AlignmentInfo((0, 4, 4), None, None, None),
- ]
- )
- return set()
- def prob_t_a_given_s_mock(a):
- prob_values = {
- (0, 3, 2): 0.5,
- (0, 2, 2): 0.6,
- (0, 1, 1): 0.4,
- (0, 3, 3): 0.6,
- (0, 4, 4): 0.7,
- }
- return prob_values.get(a.alignment, 0.01)
- ibm_model = IBMModel([])
- ibm_model.neighboring = neighboring_mock
- ibm_model.prob_t_a_given_s = prob_t_a_given_s_mock
- # act
- best_alignment = ibm_model.hillclimb(initial_alignment)
- # assert: hill climbing goes from (0, 3, 2) -> (0, 2, 2) -> (0, 4, 4)
- self.assertEqual(best_alignment.alignment, (0, 4, 4))
- def test_sample(self):
- # arrange
- sentence_pair = AlignedSent(
- TestIBMModel.__TEST_TRG_SENTENCE, TestIBMModel.__TEST_SRC_SENTENCE
- )
- ibm_model = IBMModel([])
- ibm_model.prob_t_a_given_s = lambda x: 0.001
- # act
- samples, best_alignment = ibm_model.sample(sentence_pair)
- # assert
- self.assertEqual(len(samples), 61)
|