| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789 |
- # -*- coding: utf-8 -*-
- # Natural Language Toolkit: Text Trees
- #
- # Copyright (C) 2001-2020 NLTK Project
- # Author: Edward Loper <edloper@gmail.com>
- # Steven Bird <stevenbird1@gmail.com>
- # Peter Ljunglöf <peter.ljunglof@gu.se>
- # Nathan Bodenstab <bodenstab@cslu.ogi.edu> (tree transforms)
- # URL: <http://nltk.org/>
- # For license information, see LICENSE.TXT
- """
- Class for representing hierarchical language structures, such as
- syntax trees and morphological trees.
- """
- import re
- import sys
- from abc import ABCMeta, abstractmethod
- from nltk.grammar import Production, Nonterminal
- from nltk.probability import ProbabilisticMixIn
- from nltk.util import slice_bounds
- from nltk.internals import raise_unorderable_types
- # TODO: add LabelledTree (can be used for dependency trees)
- ######################################################################
- ## Trees
- ######################################################################
- class Tree(list):
- """
- A Tree represents a hierarchical grouping of leaves and subtrees.
- For example, each constituent in a syntax tree is represented by a single Tree.
- A tree's children are encoded as a list of leaves and subtrees,
- where a leaf is a basic (non-tree) value; and a subtree is a
- nested Tree.
- >>> from nltk.tree import Tree
- >>> print(Tree(1, [2, Tree(3, [4]), 5]))
- (1 2 (3 4) 5)
- >>> vp = Tree('VP', [Tree('V', ['saw']),
- ... Tree('NP', ['him'])])
- >>> s = Tree('S', [Tree('NP', ['I']), vp])
- >>> print(s)
- (S (NP I) (VP (V saw) (NP him)))
- >>> print(s[1])
- (VP (V saw) (NP him))
- >>> print(s[1,1])
- (NP him)
- >>> t = Tree.fromstring("(S (NP I) (VP (V saw) (NP him)))")
- >>> s == t
- True
- >>> t[1][1].set_label('X')
- >>> t[1][1].label()
- 'X'
- >>> print(t)
- (S (NP I) (VP (V saw) (X him)))
- >>> t[0], t[1,1] = t[1,1], t[0]
- >>> print(t)
- (S (X him) (VP (V saw) (NP I)))
- The length of a tree is the number of children it has.
- >>> len(t)
- 2
- The set_label() and label() methods allow individual constituents
- to be labeled. For example, syntax trees use this label to specify
- phrase tags, such as "NP" and "VP".
- Several Tree methods use "tree positions" to specify
- children or descendants of a tree. Tree positions are defined as
- follows:
- - The tree position *i* specifies a Tree's *i*\ th child.
- - The tree position ``()`` specifies the Tree itself.
- - If *p* is the tree position of descendant *d*, then
- *p+i* specifies the *i*\ th child of *d*.
- I.e., every tree position is either a single index *i*,
- specifying ``tree[i]``; or a sequence *i1, i2, ..., iN*,
- specifying ``tree[i1][i2]...[iN]``.
- Construct a new tree. This constructor can be called in one
- of two ways:
- - ``Tree(label, children)`` constructs a new tree with the
- specified label and list of children.
- - ``Tree.fromstring(s)`` constructs a new tree by parsing the string ``s``.
- """
- def __init__(self, node, children=None):
- if children is None:
- raise TypeError(
- "%s: Expected a node value and child list " % type(self).__name__
- )
- elif isinstance(children, str):
- raise TypeError(
- "%s() argument 2 should be a list, not a "
- "string" % type(self).__name__
- )
- else:
- list.__init__(self, children)
- self._label = node
- # ////////////////////////////////////////////////////////////
- # Comparison operators
- # ////////////////////////////////////////////////////////////
- def __eq__(self, other):
- return self.__class__ is other.__class__ and (self._label, list(self)) == (
- other._label,
- list(other),
- )
- def __lt__(self, other):
- if not isinstance(other, Tree):
- # raise_unorderable_types("<", self, other)
- # Sometimes children can be pure strings,
- # so we need to be able to compare with non-trees:
- return self.__class__.__name__ < other.__class__.__name__
- elif self.__class__ is other.__class__:
- return (self._label, list(self)) < (other._label, list(other))
- else:
- return self.__class__.__name__ < other.__class__.__name__
- # @total_ordering doesn't work here, since the class inherits from a builtin class
- __ne__ = lambda self, other: not self == other
- __gt__ = lambda self, other: not (self < other or self == other)
- __le__ = lambda self, other: self < other or self == other
- __ge__ = lambda self, other: not self < other
- # ////////////////////////////////////////////////////////////
- # Disabled list operations
- # ////////////////////////////////////////////////////////////
- def __mul__(self, v):
- raise TypeError("Tree does not support multiplication")
- def __rmul__(self, v):
- raise TypeError("Tree does not support multiplication")
- def __add__(self, v):
- raise TypeError("Tree does not support addition")
- def __radd__(self, v):
- raise TypeError("Tree does not support addition")
- # ////////////////////////////////////////////////////////////
- # Indexing (with support for tree positions)
- # ////////////////////////////////////////////////////////////
- def __getitem__(self, index):
- if isinstance(index, (int, slice)):
- return list.__getitem__(self, index)
- elif isinstance(index, (list, tuple)):
- if len(index) == 0:
- return self
- elif len(index) == 1:
- return self[index[0]]
- else:
- return self[index[0]][index[1:]]
- else:
- raise TypeError(
- "%s indices must be integers, not %s"
- % (type(self).__name__, type(index).__name__)
- )
- def __setitem__(self, index, value):
- if isinstance(index, (int, slice)):
- return list.__setitem__(self, index, value)
- elif isinstance(index, (list, tuple)):
- if len(index) == 0:
- raise IndexError("The tree position () may not be " "assigned to.")
- elif len(index) == 1:
- self[index[0]] = value
- else:
- self[index[0]][index[1:]] = value
- else:
- raise TypeError(
- "%s indices must be integers, not %s"
- % (type(self).__name__, type(index).__name__)
- )
- def __delitem__(self, index):
- if isinstance(index, (int, slice)):
- return list.__delitem__(self, index)
- elif isinstance(index, (list, tuple)):
- if len(index) == 0:
- raise IndexError("The tree position () may not be deleted.")
- elif len(index) == 1:
- del self[index[0]]
- else:
- del self[index[0]][index[1:]]
- else:
- raise TypeError(
- "%s indices must be integers, not %s"
- % (type(self).__name__, type(index).__name__)
- )
- # ////////////////////////////////////////////////////////////
- # Basic tree operations
- # ////////////////////////////////////////////////////////////
- def _get_node(self):
- """Outdated method to access the node value; use the label() method instead."""
- raise NotImplementedError("Use label() to access a node label.")
- def _set_node(self, value):
- """Outdated method to set the node value; use the set_label() method instead."""
- raise NotImplementedError("Use set_label() method to set a node label.")
- node = property(_get_node, _set_node)
- def label(self):
- """
- Return the node label of the tree.
- >>> t = Tree.fromstring('(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))')
- >>> t.label()
- 'S'
- :return: the node label (typically a string)
- :rtype: any
- """
- return self._label
- def set_label(self, label):
- """
- Set the node label of the tree.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> t.set_label("T")
- >>> print(t)
- (T (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))
- :param label: the node label (typically a string)
- :type label: any
- """
- self._label = label
- def leaves(self):
- """
- Return the leaves of the tree.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> t.leaves()
- ['the', 'dog', 'chased', 'the', 'cat']
- :return: a list containing this tree's leaves.
- The order reflects the order of the
- leaves in the tree's hierarchical structure.
- :rtype: list
- """
- leaves = []
- for child in self:
- if isinstance(child, Tree):
- leaves.extend(child.leaves())
- else:
- leaves.append(child)
- return leaves
- def flatten(self):
- """
- Return a flat version of the tree, with all non-root non-terminals removed.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> print(t.flatten())
- (S the dog chased the cat)
- :return: a tree consisting of this tree's root connected directly to
- its leaves, omitting all intervening non-terminal nodes.
- :rtype: Tree
- """
- return Tree(self.label(), self.leaves())
- def height(self):
- """
- Return the height of the tree.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> t.height()
- 5
- >>> print(t[0,0])
- (D the)
- >>> t[0,0].height()
- 2
- :return: The height of this tree. The height of a tree
- containing no children is 1; the height of a tree
- containing only leaves is 2; and the height of any other
- tree is one plus the maximum of its children's
- heights.
- :rtype: int
- """
- max_child_height = 0
- for child in self:
- if isinstance(child, Tree):
- max_child_height = max(max_child_height, child.height())
- else:
- max_child_height = max(max_child_height, 1)
- return 1 + max_child_height
- def treepositions(self, order="preorder"):
- """
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> t.treepositions() # doctest: +ELLIPSIS
- [(), (0,), (0, 0), (0, 0, 0), (0, 1), (0, 1, 0), (1,), (1, 0), (1, 0, 0), ...]
- >>> for pos in t.treepositions('leaves'):
- ... t[pos] = t[pos][::-1].upper()
- >>> print(t)
- (S (NP (D EHT) (N GOD)) (VP (V DESAHC) (NP (D EHT) (N TAC))))
- :param order: One of: ``preorder``, ``postorder``, ``bothorder``,
- ``leaves``.
- """
- positions = []
- if order in ("preorder", "bothorder"):
- positions.append(())
- for i, child in enumerate(self):
- if isinstance(child, Tree):
- childpos = child.treepositions(order)
- positions.extend((i,) + p for p in childpos)
- else:
- positions.append((i,))
- if order in ("postorder", "bothorder"):
- positions.append(())
- return positions
- def subtrees(self, filter=None):
- """
- Generate all the subtrees of this tree, optionally restricted
- to trees matching the filter function.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> for s in t.subtrees(lambda t: t.height() == 2):
- ... print(s)
- (D the)
- (N dog)
- (V chased)
- (D the)
- (N cat)
- :type filter: function
- :param filter: the function to filter all local trees
- """
- if not filter or filter(self):
- yield self
- for child in self:
- if isinstance(child, Tree):
- for subtree in child.subtrees(filter):
- yield subtree
- def productions(self):
- """
- Generate the productions that correspond to the non-terminal nodes of the tree.
- For each subtree of the form (P: C1 C2 ... Cn) this produces a production of the
- form P -> C1 C2 ... Cn.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> t.productions()
- [S -> NP VP, NP -> D N, D -> 'the', N -> 'dog', VP -> V NP, V -> 'chased',
- NP -> D N, D -> 'the', N -> 'cat']
- :rtype: list(Production)
- """
- if not isinstance(self._label, str):
- raise TypeError(
- "Productions can only be generated from trees having node labels that are strings"
- )
- prods = [Production(Nonterminal(self._label), _child_names(self))]
- for child in self:
- if isinstance(child, Tree):
- prods += child.productions()
- return prods
- def pos(self):
- """
- Return a sequence of pos-tagged words extracted from the tree.
- >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
- >>> t.pos()
- [('the', 'D'), ('dog', 'N'), ('chased', 'V'), ('the', 'D'), ('cat', 'N')]
- :return: a list of tuples containing leaves and pre-terminals (part-of-speech tags).
- The order reflects the order of the leaves in the tree's hierarchical structure.
- :rtype: list(tuple)
- """
- pos = []
- for child in self:
- if isinstance(child, Tree):
- pos.extend(child.pos())
- else:
- pos.append((child, self._label))
- return pos
- def leaf_treeposition(self, index):
- """
- :return: The tree position of the ``index``-th leaf in this
- tree. I.e., if ``tp=self.leaf_treeposition(i)``, then
- ``self[tp]==self.leaves()[i]``.
- :raise IndexError: If this tree contains fewer than ``index+1``
- leaves, or if ``index<0``.
- """
- if index < 0:
- raise IndexError("index must be non-negative")
- stack = [(self, ())]
- while stack:
- value, treepos = stack.pop()
- if not isinstance(value, Tree):
- if index == 0:
- return treepos
- else:
- index -= 1
- else:
- for i in range(len(value) - 1, -1, -1):
- stack.append((value[i], treepos + (i,)))
- raise IndexError("index must be less than or equal to len(self)")
- def treeposition_spanning_leaves(self, start, end):
- """
- :return: The tree position of the lowest descendant of this
- tree that dominates ``self.leaves()[start:end]``.
- :raise ValueError: if ``end <= start``
- """
- if end <= start:
- raise ValueError("end must be greater than start")
- # Find the tree positions of the start & end leaves, and
- # take the longest common subsequence.
- start_treepos = self.leaf_treeposition(start)
- end_treepos = self.leaf_treeposition(end - 1)
- # Find the first index where they mismatch:
- for i in range(len(start_treepos)):
- if i == len(end_treepos) or start_treepos[i] != end_treepos[i]:
- return start_treepos[:i]
- return start_treepos
- # ////////////////////////////////////////////////////////////
- # Transforms
- # ////////////////////////////////////////////////////////////
- def chomsky_normal_form(
- self,
- factor="right",
- horzMarkov=None,
- vertMarkov=0,
- childChar="|",
- parentChar="^",
- ):
- """
- This method can modify a tree in three ways:
- 1. Convert a tree into its Chomsky Normal Form (CNF)
- equivalent -- Every subtree has either two non-terminals
- or one terminal as its children. This process requires
- the creation of more"artificial" non-terminal nodes.
- 2. Markov (vertical) smoothing of children in new artificial
- nodes
- 3. Horizontal (parent) annotation of nodes
- :param factor: Right or left factoring method (default = "right")
- :type factor: str = [left|right]
- :param horzMarkov: Markov order for sibling smoothing in artificial nodes (None (default) = include all siblings)
- :type horzMarkov: int | None
- :param vertMarkov: Markov order for parent smoothing (0 (default) = no vertical annotation)
- :type vertMarkov: int | None
- :param childChar: A string used in construction of the artificial nodes, separating the head of the
- original subtree from the child nodes that have yet to be expanded (default = "|")
- :type childChar: str
- :param parentChar: A string used to separate the node representation from its vertical annotation
- :type parentChar: str
- """
- from nltk.treetransforms import chomsky_normal_form
- chomsky_normal_form(self, factor, horzMarkov, vertMarkov, childChar, parentChar)
- def un_chomsky_normal_form(
- self, expandUnary=True, childChar="|", parentChar="^", unaryChar="+"
- ):
- """
- This method modifies the tree in three ways:
- 1. Transforms a tree in Chomsky Normal Form back to its
- original structure (branching greater than two)
- 2. Removes any parent annotation (if it exists)
- 3. (optional) expands unary subtrees (if previously
- collapsed with collapseUnary(...) )
- :param expandUnary: Flag to expand unary or not (default = True)
- :type expandUnary: bool
- :param childChar: A string separating the head node from its children in an artificial node (default = "|")
- :type childChar: str
- :param parentChar: A sting separating the node label from its parent annotation (default = "^")
- :type parentChar: str
- :param unaryChar: A string joining two non-terminals in a unary production (default = "+")
- :type unaryChar: str
- """
- from nltk.treetransforms import un_chomsky_normal_form
- un_chomsky_normal_form(self, expandUnary, childChar, parentChar, unaryChar)
- def collapse_unary(self, collapsePOS=False, collapseRoot=False, joinChar="+"):
- """
- Collapse subtrees with a single child (ie. unary productions)
- into a new non-terminal (Tree node) joined by 'joinChar'.
- This is useful when working with algorithms that do not allow
- unary productions, and completely removing the unary productions
- would require loss of useful information. The Tree is modified
- directly (since it is passed by reference) and no value is returned.
- :param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie.
- Part-of-Speech tags) since they are always unary productions
- :type collapsePOS: bool
- :param collapseRoot: 'False' (default) will not modify the root production
- if it is unary. For the Penn WSJ treebank corpus, this corresponds
- to the TOP -> productions.
- :type collapseRoot: bool
- :param joinChar: A string used to connect collapsed node values (default = "+")
- :type joinChar: str
- """
- from nltk.treetransforms import collapse_unary
- collapse_unary(self, collapsePOS, collapseRoot, joinChar)
- # ////////////////////////////////////////////////////////////
- # Convert, copy
- # ////////////////////////////////////////////////////////////
- @classmethod
- def convert(cls, tree):
- """
- Convert a tree between different subtypes of Tree. ``cls`` determines
- which class will be used to encode the new tree.
- :type tree: Tree
- :param tree: The tree that should be converted.
- :return: The new Tree.
- """
- if isinstance(tree, Tree):
- children = [cls.convert(child) for child in tree]
- return cls(tree._label, children)
- else:
- return tree
- def __copy__(self):
- return self.copy()
- def __deepcopy__(self, memo):
- return self.copy(deep=True)
- def copy(self, deep=False):
- if not deep:
- return type(self)(self._label, self)
- else:
- return type(self).convert(self)
- def _frozen_class(self):
- return ImmutableTree
- def freeze(self, leaf_freezer=None):
- frozen_class = self._frozen_class()
- if leaf_freezer is None:
- newcopy = frozen_class.convert(self)
- else:
- newcopy = self.copy(deep=True)
- for pos in newcopy.treepositions("leaves"):
- newcopy[pos] = leaf_freezer(newcopy[pos])
- newcopy = frozen_class.convert(newcopy)
- hash(newcopy) # Make sure the leaves are hashable.
- return newcopy
- # ////////////////////////////////////////////////////////////
- # Parsing
- # ////////////////////////////////////////////////////////////
- @classmethod
- def fromstring(
- cls,
- s,
- brackets="()",
- read_node=None,
- read_leaf=None,
- node_pattern=None,
- leaf_pattern=None,
- remove_empty_top_bracketing=False,
- ):
- """
- Read a bracketed tree string and return the resulting tree.
- Trees are represented as nested brackettings, such as::
- (S (NP (NNP John)) (VP (V runs)))
- :type s: str
- :param s: The string to read
- :type brackets: str (length=2)
- :param brackets: The bracket characters used to mark the
- beginning and end of trees and subtrees.
- :type read_node: function
- :type read_leaf: function
- :param read_node, read_leaf: If specified, these functions
- are applied to the substrings of ``s`` corresponding to
- nodes and leaves (respectively) to obtain the values for
- those nodes and leaves. They should have the following
- signature:
- read_node(str) -> value
- For example, these functions could be used to process nodes
- and leaves whose values should be some type other than
- string (such as ``FeatStruct``).
- Note that by default, node strings and leaf strings are
- delimited by whitespace and brackets; to override this
- default, use the ``node_pattern`` and ``leaf_pattern``
- arguments.
- :type node_pattern: str
- :type leaf_pattern: str
- :param node_pattern, leaf_pattern: Regular expression patterns
- used to find node and leaf substrings in ``s``. By
- default, both nodes patterns are defined to match any
- sequence of non-whitespace non-bracket characters.
- :type remove_empty_top_bracketing: bool
- :param remove_empty_top_bracketing: If the resulting tree has
- an empty node label, and is length one, then return its
- single child instead. This is useful for treebank trees,
- which sometimes contain an extra level of bracketing.
- :return: A tree corresponding to the string representation ``s``.
- If this class method is called using a subclass of Tree,
- then it will return a tree of that type.
- :rtype: Tree
- """
- if not isinstance(brackets, str) or len(brackets) != 2:
- raise TypeError("brackets must be a length-2 string")
- if re.search("\s", brackets):
- raise TypeError("whitespace brackets not allowed")
- # Construct a regexp that will tokenize the string.
- open_b, close_b = brackets
- open_pattern, close_pattern = (re.escape(open_b), re.escape(close_b))
- if node_pattern is None:
- node_pattern = "[^\s%s%s]+" % (open_pattern, close_pattern)
- if leaf_pattern is None:
- leaf_pattern = "[^\s%s%s]+" % (open_pattern, close_pattern)
- token_re = re.compile(
- "%s\s*(%s)?|%s|(%s)"
- % (open_pattern, node_pattern, close_pattern, leaf_pattern)
- )
- # Walk through each token, updating a stack of trees.
- stack = [(None, [])] # list of (node, children) tuples
- for match in token_re.finditer(s):
- token = match.group()
- # Beginning of a tree/subtree
- if token[0] == open_b:
- if len(stack) == 1 and len(stack[0][1]) > 0:
- cls._parse_error(s, match, "end-of-string")
- label = token[1:].lstrip()
- if read_node is not None:
- label = read_node(label)
- stack.append((label, []))
- # End of a tree/subtree
- elif token == close_b:
- if len(stack) == 1:
- if len(stack[0][1]) == 0:
- cls._parse_error(s, match, open_b)
- else:
- cls._parse_error(s, match, "end-of-string")
- label, children = stack.pop()
- stack[-1][1].append(cls(label, children))
- # Leaf node
- else:
- if len(stack) == 1:
- cls._parse_error(s, match, open_b)
- if read_leaf is not None:
- token = read_leaf(token)
- stack[-1][1].append(token)
- # check that we got exactly one complete tree.
- if len(stack) > 1:
- cls._parse_error(s, "end-of-string", close_b)
- elif len(stack[0][1]) == 0:
- cls._parse_error(s, "end-of-string", open_b)
- else:
- assert stack[0][0] is None
- assert len(stack[0][1]) == 1
- tree = stack[0][1][0]
- # If the tree has an extra level with node='', then get rid of
- # it. E.g.: "((S (NP ...) (VP ...)))"
- if remove_empty_top_bracketing and tree._label == "" and len(tree) == 1:
- tree = tree[0]
- # return the tree.
- return tree
- @classmethod
- def _parse_error(cls, s, match, expecting):
- """
- Display a friendly error message when parsing a tree string fails.
- :param s: The string we're parsing.
- :param match: regexp match of the problem token.
- :param expecting: what we expected to see instead.
- """
- # Construct a basic error message
- if match == "end-of-string":
- pos, token = len(s), "end-of-string"
- else:
- pos, token = match.start(), match.group()
- msg = "%s.read(): expected %r but got %r\n%sat index %d." % (
- cls.__name__,
- expecting,
- token,
- " " * 12,
- pos,
- )
- # Add a display showing the error token itsels:
- s = s.replace("\n", " ").replace("\t", " ")
- offset = pos
- if len(s) > pos + 10:
- s = s[: pos + 10] + "..."
- if pos > 10:
- s = "..." + s[pos - 10 :]
- offset = 13
- msg += '\n%s"%s"\n%s^' % (" " * 16, s, " " * (17 + offset))
- raise ValueError(msg)
- # ////////////////////////////////////////////////////////////
- # Visualization & String Representation
- # ////////////////////////////////////////////////////////////
- def draw(self):
- """
- Open a new window containing a graphical diagram of this tree.
- """
- from nltk.draw.tree import draw_trees
- draw_trees(self)
- def pretty_print(self, sentence=None, highlight=(), stream=None, **kwargs):
- """
- Pretty-print this tree as ASCII or Unicode art.
- For explanation of the arguments, see the documentation for
- `nltk.treeprettyprinter.TreePrettyPrinter`.
- """
- from nltk.treeprettyprinter import TreePrettyPrinter
- print(TreePrettyPrinter(self, sentence, highlight).text(**kwargs), file=stream)
- def __repr__(self):
- childstr = ", ".join(repr(c) for c in self)
- return "%s(%s, [%s])" % (
- type(self).__name__,
- repr(self._label),
- childstr,
- )
- def _repr_png_(self):
- """
- Draws and outputs in PNG for ipython.
- PNG is used instead of PDF, since it can be displayed in the qt console and
- has wider browser support.
- """
- import os
- import base64
- import subprocess
- import tempfile
- from nltk.draw.tree import tree_to_treesegment
- from nltk.draw.util import CanvasFrame
- from nltk.internals import find_binary
- _canvas_frame = CanvasFrame()
- widget = tree_to_treesegment(_canvas_frame.canvas(), self)
- _canvas_frame.add_widget(widget)
- x, y, w, h = widget.bbox()
- # print_to_file uses scrollregion to set the width and height of the pdf.
- _canvas_frame.canvas()["scrollregion"] = (0, 0, w, h)
- with tempfile.NamedTemporaryFile() as file:
- in_path = "{0:}.ps".format(file.name)
- out_path = "{0:}.png".format(file.name)
- _canvas_frame.print_to_file(in_path)
- _canvas_frame.destroy_widget(widget)
- try:
- subprocess.call(
- [
- find_binary(
- "gs",
- binary_names=["gswin32c.exe", "gswin64c.exe"],
- env_vars=["PATH"],
- verbose=False,
- )
- ]
- + "-q -dEPSCrop -sDEVICE=png16m -r90 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -dSAFER -dBATCH -dNOPAUSE -sOutputFile={0:} {1:}".format(
- out_path, in_path
- ).split()
- )
- except LookupError:
- pre_error_message = str(
- "The Ghostscript executable isn't found.\n"
- "See http://web.mit.edu/ghostscript/www/Install.htm\n"
- "If you're using a Mac, you can try installing\n"
- "https://docs.brew.sh/Installation then `brew install ghostscript`"
- )
- print(pre_error_message, file=sys.stderr)
- raise LookupError
- with open(out_path, "rb") as sr:
- res = sr.read()
- os.remove(in_path)
- os.remove(out_path)
- return base64.b64encode(res).decode()
- def __str__(self):
- return self.pformat()
- def pprint(self, **kwargs):
- """
- Print a string representation of this Tree to 'stream'
- """
- if "stream" in kwargs:
- stream = kwargs["stream"]
- del kwargs["stream"]
- else:
- stream = None
- print(self.pformat(**kwargs), file=stream)
- def pformat(self, margin=70, indent=0, nodesep="", parens="()", quotes=False):
- """
- :return: A pretty-printed string representation of this tree.
- :rtype: str
- :param margin: The right margin at which to do line-wrapping.
- :type margin: int
- :param indent: The indentation level at which printing
- begins. This number is used to decide how far to indent
- subsequent lines.
- :type indent: int
- :param nodesep: A string that is used to separate the node
- from the children. E.g., the default value ``':'`` gives
- trees like ``(S: (NP: I) (VP: (V: saw) (NP: it)))``.
- """
- # Try writing it on one line.
- s = self._pformat_flat(nodesep, parens, quotes)
- if len(s) + indent < margin:
- return s
- # If it doesn't fit on one line, then write it on multi-lines.
- if isinstance(self._label, str):
- s = "%s%s%s" % (parens[0], self._label, nodesep)
- else:
- s = "%s%s%s" % (parens[0], repr(self._label), nodesep)
- for child in self:
- if isinstance(child, Tree):
- s += (
- "\n"
- + " " * (indent + 2)
- + child.pformat(margin, indent + 2, nodesep, parens, quotes)
- )
- elif isinstance(child, tuple):
- s += "\n" + " " * (indent + 2) + "/".join(child)
- elif isinstance(child, str) and not quotes:
- s += "\n" + " " * (indent + 2) + "%s" % child
- else:
- s += "\n" + " " * (indent + 2) + repr(child)
- return s + parens[1]
- def pformat_latex_qtree(self):
- r"""
- Returns a representation of the tree compatible with the
- LaTeX qtree package. This consists of the string ``\Tree``
- followed by the tree represented in bracketed notation.
- For example, the following result was generated from a parse tree of
- the sentence ``The announcement astounded us``::
- \Tree [.I'' [.N'' [.D The ] [.N' [.N announcement ] ] ]
- [.I' [.V'' [.V' [.V astounded ] [.N'' [.N' [.N us ] ] ] ] ] ] ]
- See http://www.ling.upenn.edu/advice/latex.html for the LaTeX
- style file for the qtree package.
- :return: A latex qtree representation of this tree.
- :rtype: str
- """
- reserved_chars = re.compile("([#\$%&~_\{\}])")
- pformat = self.pformat(indent=6, nodesep="", parens=("[.", " ]"))
- return r"\Tree " + re.sub(reserved_chars, r"\\\1", pformat)
- def _pformat_flat(self, nodesep, parens, quotes):
- childstrs = []
- for child in self:
- if isinstance(child, Tree):
- childstrs.append(child._pformat_flat(nodesep, parens, quotes))
- elif isinstance(child, tuple):
- childstrs.append("/".join(child))
- elif isinstance(child, str) and not quotes:
- childstrs.append("%s" % child)
- else:
- childstrs.append(repr(child))
- if isinstance(self._label, str):
- return "%s%s%s %s%s" % (
- parens[0],
- self._label,
- nodesep,
- " ".join(childstrs),
- parens[1],
- )
- else:
- return "%s%s%s %s%s" % (
- parens[0],
- repr(self._label),
- nodesep,
- " ".join(childstrs),
- parens[1],
- )
- class ImmutableTree(Tree):
- def __init__(self, node, children=None):
- super(ImmutableTree, self).__init__(node, children)
- # Precompute our hash value. This ensures that we're really
- # immutable. It also means we only have to calculate it once.
- try:
- self._hash = hash((self._label, tuple(self)))
- except (TypeError, ValueError):
- raise ValueError(
- "%s: node value and children " "must be immutable" % type(self).__name__
- )
- def __setitem__(self, index, value):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def __setslice__(self, i, j, value):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def __delitem__(self, index):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def __delslice__(self, i, j):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def __iadd__(self, other):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def __imul__(self, other):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def append(self, v):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def extend(self, v):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def pop(self, v=None):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def remove(self, v):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def reverse(self):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def sort(self):
- raise ValueError("%s may not be modified" % type(self).__name__)
- def __hash__(self):
- return self._hash
- def set_label(self, value):
- """
- Set the node label. This will only succeed the first time the
- node label is set, which should occur in ImmutableTree.__init__().
- """
- if hasattr(self, "_label"):
- raise ValueError("%s may not be modified" % type(self).__name__)
- self._label = value
- ######################################################################
- ## Parented trees
- ######################################################################
- class AbstractParentedTree(Tree, metaclass=ABCMeta):
- """
- An abstract base class for a ``Tree`` that automatically maintains
- pointers to parent nodes. These parent pointers are updated
- whenever any change is made to a tree's structure. Two subclasses
- are currently defined:
- - ``ParentedTree`` is used for tree structures where each subtree
- has at most one parent. This class should be used in cases
- where there is no"sharing" of subtrees.
- - ``MultiParentedTree`` is used for tree structures where a
- subtree may have zero or more parents. This class should be
- used in cases where subtrees may be shared.
- Subclassing
- ===========
- The ``AbstractParentedTree`` class redefines all operations that
- modify a tree's structure to call two methods, which are used by
- subclasses to update parent information:
- - ``_setparent()`` is called whenever a new child is added.
- - ``_delparent()`` is called whenever a child is removed.
- """
- def __init__(self, node, children=None):
- super(AbstractParentedTree, self).__init__(node, children)
- # If children is None, the tree is read from node, and
- # all parents will be set during parsing.
- if children is not None:
- # Otherwise we have to set the parent of the children.
- # Iterate over self, and *not* children, because children
- # might be an iterator.
- for i, child in enumerate(self):
- if isinstance(child, Tree):
- self._setparent(child, i, dry_run=True)
- for i, child in enumerate(self):
- if isinstance(child, Tree):
- self._setparent(child, i)
- # ////////////////////////////////////////////////////////////
- # Parent management
- # ////////////////////////////////////////////////////////////
- @abstractmethod
- def _setparent(self, child, index, dry_run=False):
- """
- Update the parent pointer of ``child`` to point to ``self``. This
- method is only called if the type of ``child`` is ``Tree``;
- i.e., it is not called when adding a leaf to a tree. This method
- is always called before the child is actually added to the
- child list of ``self``.
- :type child: Tree
- :type index: int
- :param index: The index of ``child`` in ``self``.
- :raise TypeError: If ``child`` is a tree with an impropriate
- type. Typically, if ``child`` is a tree, then its type needs
- to match the type of ``self``. This prevents mixing of
- different tree types (single-parented, multi-parented, and
- non-parented).
- :param dry_run: If true, the don't actually set the child's
- parent pointer; just check for any error conditions, and
- raise an exception if one is found.
- """
- @abstractmethod
- def _delparent(self, child, index):
- """
- Update the parent pointer of ``child`` to not point to self. This
- method is only called if the type of ``child`` is ``Tree``; i.e., it
- is not called when removing a leaf from a tree. This method
- is always called before the child is actually removed from the
- child list of ``self``.
- :type child: Tree
- :type index: int
- :param index: The index of ``child`` in ``self``.
- """
- # ////////////////////////////////////////////////////////////
- # Methods that add/remove children
- # ////////////////////////////////////////////////////////////
- # Every method that adds or removes a child must make
- # appropriate calls to _setparent() and _delparent().
- def __delitem__(self, index):
- # del ptree[start:stop]
- if isinstance(index, slice):
- start, stop, step = slice_bounds(self, index, allow_step=True)
- # Clear all the children pointers.
- for i in range(start, stop, step):
- if isinstance(self[i], Tree):
- self._delparent(self[i], i)
- # Delete the children from our child list.
- super(AbstractParentedTree, self).__delitem__(index)
- # del ptree[i]
- elif isinstance(index, int):
- if index < 0:
- index += len(self)
- if index < 0:
- raise IndexError("index out of range")
- # Clear the child's parent pointer.
- if isinstance(self[index], Tree):
- self._delparent(self[index], index)
- # Remove the child from our child list.
- super(AbstractParentedTree, self).__delitem__(index)
- elif isinstance(index, (list, tuple)):
- # del ptree[()]
- if len(index) == 0:
- raise IndexError("The tree position () may not be deleted.")
- # del ptree[(i,)]
- elif len(index) == 1:
- del self[index[0]]
- # del ptree[i1, i2, i3]
- else:
- del self[index[0]][index[1:]]
- else:
- raise TypeError(
- "%s indices must be integers, not %s"
- % (type(self).__name__, type(index).__name__)
- )
- def __setitem__(self, index, value):
- # ptree[start:stop] = value
- if isinstance(index, slice):
- start, stop, step = slice_bounds(self, index, allow_step=True)
- # make a copy of value, in case it's an iterator
- if not isinstance(value, (list, tuple)):
- value = list(value)
- # Check for any error conditions, so we can avoid ending
- # up in an inconsistent state if an error does occur.
- for i, child in enumerate(value):
- if isinstance(child, Tree):
- self._setparent(child, start + i * step, dry_run=True)
- # clear the child pointers of all parents we're removing
- for i in range(start, stop, step):
- if isinstance(self[i], Tree):
- self._delparent(self[i], i)
- # set the child pointers of the new children. We do this
- # after clearing *all* child pointers, in case we're e.g.
- # reversing the elements in a tree.
- for i, child in enumerate(value):
- if isinstance(child, Tree):
- self._setparent(child, start + i * step)
- # finally, update the content of the child list itself.
- super(AbstractParentedTree, self).__setitem__(index, value)
- # ptree[i] = value
- elif isinstance(index, int):
- if index < 0:
- index += len(self)
- if index < 0:
- raise IndexError("index out of range")
- # if the value is not changing, do nothing.
- if value is self[index]:
- return
- # Set the new child's parent pointer.
- if isinstance(value, Tree):
- self._setparent(value, index)
- # Remove the old child's parent pointer
- if isinstance(self[index], Tree):
- self._delparent(self[index], index)
- # Update our child list.
- super(AbstractParentedTree, self).__setitem__(index, value)
- elif isinstance(index, (list, tuple)):
- # ptree[()] = value
- if len(index) == 0:
- raise IndexError("The tree position () may not be assigned to.")
- # ptree[(i,)] = value
- elif len(index) == 1:
- self[index[0]] = value
- # ptree[i1, i2, i3] = value
- else:
- self[index[0]][index[1:]] = value
- else:
- raise TypeError(
- "%s indices must be integers, not %s"
- % (type(self).__name__, type(index).__name__)
- )
- def append(self, child):
- if isinstance(child, Tree):
- self._setparent(child, len(self))
- super(AbstractParentedTree, self).append(child)
- def extend(self, children):
- for child in children:
- if isinstance(child, Tree):
- self._setparent(child, len(self))
- super(AbstractParentedTree, self).append(child)
- def insert(self, index, child):
- # Handle negative indexes. Note that if index < -len(self),
- # we do *not* raise an IndexError, unlike __getitem__. This
- # is done for consistency with list.__getitem__ and list.index.
- if index < 0:
- index += len(self)
- if index < 0:
- index = 0
- # Set the child's parent, and update our child list.
- if isinstance(child, Tree):
- self._setparent(child, index)
- super(AbstractParentedTree, self).insert(index, child)
- def pop(self, index=-1):
- if index < 0:
- index += len(self)
- if index < 0:
- raise IndexError("index out of range")
- if isinstance(self[index], Tree):
- self._delparent(self[index], index)
- return super(AbstractParentedTree, self).pop(index)
- # n.b.: like `list`, this is done by equality, not identity!
- # To remove a specific child, use del ptree[i].
- def remove(self, child):
- index = self.index(child)
- if isinstance(self[index], Tree):
- self._delparent(self[index], index)
- super(AbstractParentedTree, self).remove(child)
- # We need to implement __getslice__ and friends, even though
- # they're deprecated, because otherwise list.__getslice__ will get
- # called (since we're subclassing from list). Just delegate to
- # __getitem__ etc., but use max(0, start) and max(0, stop) because
- # because negative indices are already handled *before*
- # __getslice__ is called; and we don't want to double-count them.
- if hasattr(list, "__getslice__"):
- def __getslice__(self, start, stop):
- return self.__getitem__(slice(max(0, start), max(0, stop)))
- def __delslice__(self, start, stop):
- return self.__delitem__(slice(max(0, start), max(0, stop)))
- def __setslice__(self, start, stop, value):
- return self.__setitem__(slice(max(0, start), max(0, stop)), value)
- class ParentedTree(AbstractParentedTree):
- """
- A ``Tree`` that automatically maintains parent pointers for
- single-parented trees. The following are methods for querying
- the structure of a parented tree: ``parent``, ``parent_index``,
- ``left_sibling``, ``right_sibling``, ``root``, ``treeposition``.
- Each ``ParentedTree`` may have at most one parent. In
- particular, subtrees may not be shared. Any attempt to reuse a
- single ``ParentedTree`` as a child of more than one parent (or
- as multiple children of the same parent) will cause a
- ``ValueError`` exception to be raised.
- ``ParentedTrees`` should never be used in the same tree as ``Trees``
- or ``MultiParentedTrees``. Mixing tree implementations may result
- in incorrect parent pointers and in ``TypeError`` exceptions.
- """
- def __init__(self, node, children=None):
- self._parent = None
- """The parent of this Tree, or None if it has no parent."""
- super(ParentedTree, self).__init__(node, children)
- if children is None:
- # If children is None, the tree is read from node.
- # After parsing, the parent of the immediate children
- # will point to an intermediate tree, not self.
- # We fix this by brute force:
- for i, child in enumerate(self):
- if isinstance(child, Tree):
- child._parent = None
- self._setparent(child, i)
- def _frozen_class(self):
- return ImmutableParentedTree
- # /////////////////////////////////////////////////////////////////
- # Methods
- # /////////////////////////////////////////////////////////////////
- def parent(self):
- """The parent of this tree, or None if it has no parent."""
- return self._parent
- def parent_index(self):
- """
- The index of this tree in its parent. I.e.,
- ``ptree.parent()[ptree.parent_index()] is ptree``. Note that
- ``ptree.parent_index()`` is not necessarily equal to
- ``ptree.parent.index(ptree)``, since the ``index()`` method
- returns the first child that is equal to its argument.
- """
- if self._parent is None:
- return None
- for i, child in enumerate(self._parent):
- if child is self:
- return i
- assert False, "expected to find self in self._parent!"
- def left_sibling(self):
- """The left sibling of this tree, or None if it has none."""
- parent_index = self.parent_index()
- if self._parent and parent_index > 0:
- return self._parent[parent_index - 1]
- return None # no left sibling
- def right_sibling(self):
- """The right sibling of this tree, or None if it has none."""
- parent_index = self.parent_index()
- if self._parent and parent_index < (len(self._parent) - 1):
- return self._parent[parent_index + 1]
- return None # no right sibling
- def root(self):
- """
- The root of this tree. I.e., the unique ancestor of this tree
- whose parent is None. If ``ptree.parent()`` is None, then
- ``ptree`` is its own root.
- """
- root = self
- while root.parent() is not None:
- root = root.parent()
- return root
- def treeposition(self):
- """
- The tree position of this tree, relative to the root of the
- tree. I.e., ``ptree.root[ptree.treeposition] is ptree``.
- """
- if self.parent() is None:
- return ()
- else:
- return self.parent().treeposition() + (self.parent_index(),)
- # /////////////////////////////////////////////////////////////////
- # Parent Management
- # /////////////////////////////////////////////////////////////////
- def _delparent(self, child, index):
- # Sanity checks
- assert isinstance(child, ParentedTree)
- assert self[index] is child
- assert child._parent is self
- # Delete child's parent pointer.
- child._parent = None
- def _setparent(self, child, index, dry_run=False):
- # If the child's type is incorrect, then complain.
- if not isinstance(child, ParentedTree):
- raise TypeError(
- "Can not insert a non-ParentedTree " + "into a ParentedTree"
- )
- # If child already has a parent, then complain.
- if child._parent is not None:
- raise ValueError("Can not insert a subtree that already " "has a parent.")
- # Set child's parent pointer & index.
- if not dry_run:
- child._parent = self
- class MultiParentedTree(AbstractParentedTree):
- """
- A ``Tree`` that automatically maintains parent pointers for
- multi-parented trees. The following are methods for querying the
- structure of a multi-parented tree: ``parents()``, ``parent_indices()``,
- ``left_siblings()``, ``right_siblings()``, ``roots``, ``treepositions``.
- Each ``MultiParentedTree`` may have zero or more parents. In
- particular, subtrees may be shared. If a single
- ``MultiParentedTree`` is used as multiple children of the same
- parent, then that parent will appear multiple times in its
- ``parents()`` method.
- ``MultiParentedTrees`` should never be used in the same tree as
- ``Trees`` or ``ParentedTrees``. Mixing tree implementations may
- result in incorrect parent pointers and in ``TypeError`` exceptions.
- """
- def __init__(self, node, children=None):
- self._parents = []
- """A list of this tree's parents. This list should not
- contain duplicates, even if a parent contains this tree
- multiple times."""
- super(MultiParentedTree, self).__init__(node, children)
- if children is None:
- # If children is None, the tree is read from node.
- # After parsing, the parent(s) of the immediate children
- # will point to an intermediate tree, not self.
- # We fix this by brute force:
- for i, child in enumerate(self):
- if isinstance(child, Tree):
- child._parents = []
- self._setparent(child, i)
- def _frozen_class(self):
- return ImmutableMultiParentedTree
- # /////////////////////////////////////////////////////////////////
- # Methods
- # /////////////////////////////////////////////////////////////////
- def parents(self):
- """
- The set of parents of this tree. If this tree has no parents,
- then ``parents`` is the empty set. To check if a tree is used
- as multiple children of the same parent, use the
- ``parent_indices()`` method.
- :type: list(MultiParentedTree)
- """
- return list(self._parents)
- def left_siblings(self):
- """
- A list of all left siblings of this tree, in any of its parent
- trees. A tree may be its own left sibling if it is used as
- multiple contiguous children of the same parent. A tree may
- appear multiple times in this list if it is the left sibling
- of this tree with respect to multiple parents.
- :type: list(MultiParentedTree)
- """
- return [
- parent[index - 1]
- for (parent, index) in self._get_parent_indices()
- if index > 0
- ]
- def right_siblings(self):
- """
- A list of all right siblings of this tree, in any of its parent
- trees. A tree may be its own right sibling if it is used as
- multiple contiguous children of the same parent. A tree may
- appear multiple times in this list if it is the right sibling
- of this tree with respect to multiple parents.
- :type: list(MultiParentedTree)
- """
- return [
- parent[index + 1]
- for (parent, index) in self._get_parent_indices()
- if index < (len(parent) - 1)
- ]
- def _get_parent_indices(self):
- return [
- (parent, index)
- for parent in self._parents
- for index, child in enumerate(parent)
- if child is self
- ]
- def roots(self):
- """
- The set of all roots of this tree. This set is formed by
- tracing all possible parent paths until trees with no parents
- are found.
- :type: list(MultiParentedTree)
- """
- return list(self._get_roots_helper({}).values())
- def _get_roots_helper(self, result):
- if self._parents:
- for parent in self._parents:
- parent._get_roots_helper(result)
- else:
- result[id(self)] = self
- return result
- def parent_indices(self, parent):
- """
- Return a list of the indices where this tree occurs as a child
- of ``parent``. If this child does not occur as a child of
- ``parent``, then the empty list is returned. The following is
- always true::
- for parent_index in ptree.parent_indices(parent):
- parent[parent_index] is ptree
- """
- if parent not in self._parents:
- return []
- else:
- return [index for (index, child) in enumerate(parent) if child is self]
- def treepositions(self, root):
- """
- Return a list of all tree positions that can be used to reach
- this multi-parented tree starting from ``root``. I.e., the
- following is always true::
- for treepos in ptree.treepositions(root):
- root[treepos] is ptree
- """
- if self is root:
- return [()]
- else:
- return [
- treepos + (index,)
- for parent in self._parents
- for treepos in parent.treepositions(root)
- for (index, child) in enumerate(parent)
- if child is self
- ]
- # /////////////////////////////////////////////////////////////////
- # Parent Management
- # /////////////////////////////////////////////////////////////////
- def _delparent(self, child, index):
- # Sanity checks
- assert isinstance(child, MultiParentedTree)
- assert self[index] is child
- assert len([p for p in child._parents if p is self]) == 1
- # If the only copy of child in self is at index, then delete
- # self from child's parent list.
- for i, c in enumerate(self):
- if c is child and i != index:
- break
- else:
- child._parents.remove(self)
- def _setparent(self, child, index, dry_run=False):
- # If the child's type is incorrect, then complain.
- if not isinstance(child, MultiParentedTree):
- raise TypeError(
- "Can not insert a non-MultiParentedTree " + "into a MultiParentedTree"
- )
- # Add self as a parent pointer if it's not already listed.
- if not dry_run:
- for parent in child._parents:
- if parent is self:
- break
- else:
- child._parents.append(self)
- class ImmutableParentedTree(ImmutableTree, ParentedTree):
- pass
- class ImmutableMultiParentedTree(ImmutableTree, MultiParentedTree):
- pass
- ######################################################################
- ## Probabilistic trees
- ######################################################################
- class ProbabilisticTree(Tree, ProbabilisticMixIn):
- def __init__(self, node, children=None, **prob_kwargs):
- Tree.__init__(self, node, children)
- ProbabilisticMixIn.__init__(self, **prob_kwargs)
- # We have to patch up these methods to make them work right:
- def _frozen_class(self):
- return ImmutableProbabilisticTree
- def __repr__(self):
- return "%s (p=%r)" % (Tree.__repr__(self), self.prob())
- def __str__(self):
- return "%s (p=%.6g)" % (self.pformat(margin=60), self.prob())
- def copy(self, deep=False):
- if not deep:
- return type(self)(self._label, self, prob=self.prob())
- else:
- return type(self).convert(self)
- @classmethod
- def convert(cls, val):
- if isinstance(val, Tree):
- children = [cls.convert(child) for child in val]
- if isinstance(val, ProbabilisticMixIn):
- return cls(val._label, children, prob=val.prob())
- else:
- return cls(val._label, children, prob=1.0)
- else:
- return val
- def __eq__(self, other):
- return self.__class__ is other.__class__ and (
- self._label,
- list(self),
- self.prob(),
- ) == (other._label, list(other), other.prob())
- def __lt__(self, other):
- if not isinstance(other, Tree):
- raise_unorderable_types("<", self, other)
- if self.__class__ is other.__class__:
- return (self._label, list(self), self.prob()) < (
- other._label,
- list(other),
- other.prob(),
- )
- else:
- return self.__class__.__name__ < other.__class__.__name__
- class ImmutableProbabilisticTree(ImmutableTree, ProbabilisticMixIn):
- def __init__(self, node, children=None, **prob_kwargs):
- ImmutableTree.__init__(self, node, children)
- ProbabilisticMixIn.__init__(self, **prob_kwargs)
- self._hash = hash((self._label, tuple(self), self.prob()))
- # We have to patch up these methods to make them work right:
- def _frozen_class(self):
- return ImmutableProbabilisticTree
- def __repr__(self):
- return "%s [%s]" % (Tree.__repr__(self), self.prob())
- def __str__(self):
- return "%s [%s]" % (self.pformat(margin=60), self.prob())
- def copy(self, deep=False):
- if not deep:
- return type(self)(self._label, self, prob=self.prob())
- else:
- return type(self).convert(self)
- @classmethod
- def convert(cls, val):
- if isinstance(val, Tree):
- children = [cls.convert(child) for child in val]
- if isinstance(val, ProbabilisticMixIn):
- return cls(val._label, children, prob=val.prob())
- else:
- return cls(val._label, children, prob=1.0)
- else:
- return val
- def _child_names(tree):
- names = []
- for child in tree:
- if isinstance(child, Tree):
- names.append(Nonterminal(child._label))
- else:
- names.append(child)
- return names
- ######################################################################
- ## Parsing
- ######################################################################
- def bracket_parse(s):
- """
- Use Tree.read(s, remove_empty_top_bracketing=True) instead.
- """
- raise NameError("Use Tree.read(s, remove_empty_top_bracketing=True) instead.")
- def sinica_parse(s):
- """
- Parse a Sinica Treebank string and return a tree. Trees are represented as nested brackettings,
- as shown in the following example (X represents a Chinese character):
- S(goal:NP(Head:Nep:XX)|theme:NP(Head:Nhaa:X)|quantity:Dab:X|Head:VL2:X)#0(PERIODCATEGORY)
- :return: A tree corresponding to the string representation.
- :rtype: Tree
- :param s: The string to be converted
- :type s: str
- """
- tokens = re.split(r"([()| ])", s)
- for i in range(len(tokens)):
- if tokens[i] == "(":
- tokens[i - 1], tokens[i] = (
- tokens[i],
- tokens[i - 1],
- ) # pull nonterminal inside parens
- elif ":" in tokens[i]:
- fields = tokens[i].split(":")
- if len(fields) == 2: # non-terminal
- tokens[i] = fields[1]
- else:
- tokens[i] = "(" + fields[-2] + " " + fields[-1] + ")"
- elif tokens[i] == "|":
- tokens[i] = ""
- treebank_string = " ".join(tokens)
- return Tree.fromstring(treebank_string, remove_empty_top_bracketing=True)
- # s = re.sub(r'^#[^\s]*\s', '', s) # remove leading identifier
- # s = re.sub(r'\w+:', '', s) # remove role tags
- # return s
- ######################################################################
- ## Demonstration
- ######################################################################
- def demo():
- """
- A demonstration showing how Trees and Trees can be
- used. This demonstration creates a Tree, and loads a
- Tree from the Treebank corpus,
- and shows the results of calling several of their methods.
- """
- from nltk import Tree, ProbabilisticTree
- # Demonstrate tree parsing.
- s = "(S (NP (DT the) (NN cat)) (VP (VBD ate) (NP (DT a) (NN cookie))))"
- t = Tree.fromstring(s)
- print("Convert bracketed string into tree:")
- print(t)
- print(t.__repr__())
- print("Display tree properties:")
- print(t.label()) # tree's constituent type
- print(t[0]) # tree's first child
- print(t[1]) # tree's second child
- print(t.height())
- print(t.leaves())
- print(t[1])
- print(t[1, 1])
- print(t[1, 1, 0])
- # Demonstrate tree modification.
- the_cat = t[0]
- the_cat.insert(1, Tree.fromstring("(JJ big)"))
- print("Tree modification:")
- print(t)
- t[1, 1, 1] = Tree.fromstring("(NN cake)")
- print(t)
- print()
- # Tree transforms
- print("Collapse unary:")
- t.collapse_unary()
- print(t)
- print("Chomsky normal form:")
- t.chomsky_normal_form()
- print(t)
- print()
- # Demonstrate probabilistic trees.
- pt = ProbabilisticTree("x", ["y", "z"], prob=0.5)
- print("Probabilistic Tree:")
- print(pt)
- print()
- # Demonstrate parsing of treebank output format.
- t = Tree.fromstring(t.pformat())
- print("Convert tree to bracketed string and back again:")
- print(t)
- print()
- # Demonstrate LaTeX output
- print("LaTeX output:")
- print(t.pformat_latex_qtree())
- print()
- # Demonstrate Productions
- print("Production output:")
- print(t.productions())
- print()
- # Demonstrate tree nodes containing objects other than strings
- t.set_label(("test", 3))
- print(t)
- __all__ = [
- "ImmutableProbabilisticTree",
- "ImmutableTree",
- "ProbabilisticMixIn",
- "ProbabilisticTree",
- "Tree",
- "bracket_parse",
- "sinica_parse",
- "ParentedTree",
- "MultiParentedTree",
- "ImmutableParentedTree",
- "ImmutableMultiParentedTree",
- ]
|