| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951 |
- <!--
- Automatically generated HTML file from DocOnce source
- (https://github.com/hplgit/doconce/)
- -->
- <html>
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
- <meta name="generator" content="DocOnce: https://github.com/hplgit/doconce/" />
- <meta name="description" content="Using Pysketcher to Create Principal Sketches of Physics Problems">
- <meta name="keywords" content="tree data structure,recursive function calls">
- <title>Using Pysketcher to Create Principal Sketches of Physics Problems</title>
- <!-- Bootstrap style: bootswatch_readable -->
- <link href="http://netdna.bootstrapcdn.com/bootswatch/3.1.1/readable/bootstrap.min.css" rel="stylesheet">
- <!-- not necessary
- <link href="http://netdna.bootstrapcdn.com/font-awesome/4.0.3/css/font-awesome.css" rel="stylesheet">
- -->
- <style type="text/css">
- /* Add scrollbar to dropdown menus in bootstrap navigation bar */
- .dropdown-menu {
- height: auto;
- max-height: 400px;
- overflow-x: hidden;
- }
- </style>
- </head>
- <!-- tocinfo
- {'highest level': 1,
- 'sections': [('A first glimpse of Pysketcher', 1, None, '___sec0'),
- ('Basic construction of sketches', 2, None, '___sec1'),
- ('Basic drawing', 3, None, '___sec2'),
- ('Groups of objects', 3, None, '___sec3'),
- ('Changing line styles and colors', 3, None, '___sec4'),
- ('The figure composition as an object hierarchy',
- 3,
- None,
- '___sec5'),
- ('Animation: translating the vehicle', 3, None, '___sec6'),
- ('Animation: rolling the wheels',
- 3,
- 'sketcher:vehicle1:anim',
- 'sketcher:vehicle1:anim'),
- ('A simple pendulum',
- 1,
- 'sketcher:ex:pendulum',
- 'sketcher:ex:pendulum'),
- ('The basic physics sketch',
- 2,
- 'sketcher:ex:pendulum:basic',
- 'sketcher:ex:pendulum:basic'),
- ('The body diagram', 2, None, '___sec10'),
- ('Animated body diagram',
- 2,
- 'sketcher:ex:pendulum:anim',
- 'sketcher:ex:pendulum:anim'),
- ('Function for drawing the body diagram', 3, None, '___sec12'),
- ('Equations for the motion and forces', 3, None, '___sec13'),
- ('Numerical solution', 3, None, '___sec14'),
- ('Animation', 3, None, '___sec15'),
- ('Basic shapes', 1, None, '___sec16'),
- ('Axis', 2, None, '___sec17'),
- ('Distance with text', 2, None, '___sec18'),
- ('Rectangle', 2, None, '___sec19'),
- ('Triangle', 2, None, '___sec20'),
- ('Arc', 2, None, '___sec21'),
- ('Spring', 2, None, '___sec22'),
- ('Dashpot', 2, None, '___sec23'),
- ('Wavy', 2, None, '___sec24'),
- ('Stochastic curves', 2, None, '___sec25'),
- ('Inner workings of the Pysketcher tool', 1, None, '___sec26'),
- ('Example of classes for geometric objects',
- 2,
- None,
- '___sec27'),
- ('Simple geometric objects', 3, None, '___sec28'),
- ('Class curve', 3, None, '___sec29'),
- ('Compound geometric objects', 3, None, '___sec30'),
- ('Adding functionality via recursion', 2, None, '___sec31'),
- ('Basic principles of recursion', 3, None, '___sec32'),
- ('Explaining recursion', 3, None, '___sec33'),
- ('Scaling, translating, and rotating a figure',
- 2,
- 'sketcher:scaling',
- 'sketcher:scaling'),
- ('Scaling', 3, None, '___sec35'),
- ('Translation', 3, None, '___sec36'),
- ('Rotation', 3, None, '___sec37')]}
- end of tocinfo -->
- <body>
- <script type="text/x-mathjax-config">
- MathJax.Hub.Config({
- TeX: {
- equationNumbers: { autoNumber: "none" },
- extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js", "color.js"]
- }
- });
- </script>
- <script type="text/javascript"
- src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
- </script>
- <!-- newcommands.tex -->
- $$
- \newcommand{\half}{\frac{1}{2}}
- \newcommand{\tp}{\thinspace .}
- \newcommand{\rpos}{\boldsymbol{r}}
- \newcommand{\ii}{\boldsymbol{i}}
- \newcommand{\jj}{\boldsymbol{j}}
- \newcommand{\ir}{\boldsymbol{i}_r}
- \newcommand{\ith}{\boldsymbol{i}_{\theta}}
- $$
-
- <!-- Bootstrap navigation bar -->
- <div class="navbar navbar-default navbar-fixed-top">
- <div class="navbar-header">
- <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-responsive-collapse">
- <span class="icon-bar"></span>
- <span class="icon-bar"></span>
- <span class="icon-bar"></span>
- </button>
- <a class="navbar-brand" href="pysketcher.html">Using Pysketcher to Create Principal Sketches of Physics Problems</a>
- </div>
- <div class="navbar-collapse collapse navbar-responsive-collapse">
- <ul class="nav navbar-nav navbar-right">
- <li class="dropdown">
- <a href="#" class="dropdown-toggle" data-toggle="dropdown">Contents <b class="caret"></b></a>
- <ul class="dropdown-menu">
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec0" style="font-size: 80%;"><b>A first glimpse of Pysketcher</b></a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec1" style="font-size: 80%;"> Basic construction of sketches</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec2" style="font-size: 80%;"> Basic drawing</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec3" style="font-size: 80%;"> Groups of objects</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec4" style="font-size: 80%;"> Changing line styles and colors</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec5" style="font-size: 80%;"> The figure composition as an object hierarchy</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#___sec6" style="font-size: 80%;"> Animation: translating the vehicle</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher002.html#sketcher:vehicle1:anim" style="font-size: 80%;"> Animation: rolling the wheels</a></li>
- <!-- navigation toc: --> <li><a href="#sketcher:ex:pendulum" style="font-size: 80%;"><b>A simple pendulum</b></a></li>
- <!-- navigation toc: --> <li><a href="#sketcher:ex:pendulum:basic" style="font-size: 80%;"> The basic physics sketch</a></li>
- <!-- navigation toc: --> <li><a href="#___sec10" style="font-size: 80%;"> The body diagram</a></li>
- <!-- navigation toc: --> <li><a href="#sketcher:ex:pendulum:anim" style="font-size: 80%;"> Animated body diagram</a></li>
- <!-- navigation toc: --> <li><a href="#___sec12" style="font-size: 80%;"> Function for drawing the body diagram</a></li>
- <!-- navigation toc: --> <li><a href="#___sec13" style="font-size: 80%;"> Equations for the motion and forces</a></li>
- <!-- navigation toc: --> <li><a href="#___sec14" style="font-size: 80%;"> Numerical solution</a></li>
- <!-- navigation toc: --> <li><a href="#___sec15" style="font-size: 80%;"> Animation</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec16" style="font-size: 80%;"><b>Basic shapes</b></a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec17" style="font-size: 80%;"> Axis</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec18" style="font-size: 80%;"> Distance with text</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec19" style="font-size: 80%;"> Rectangle</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec20" style="font-size: 80%;"> Triangle</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec21" style="font-size: 80%;"> Arc</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec22" style="font-size: 80%;"> Spring</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec23" style="font-size: 80%;"> Dashpot</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec24" style="font-size: 80%;"> Wavy</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher004.html#___sec25" style="font-size: 80%;"> Stochastic curves</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec26" style="font-size: 80%;"><b>Inner workings of the Pysketcher tool</b></a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec27" style="font-size: 80%;"> Example of classes for geometric objects</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec28" style="font-size: 80%;"> Simple geometric objects</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec29" style="font-size: 80%;"> Class curve</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec30" style="font-size: 80%;"> Compound geometric objects</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec31" style="font-size: 80%;"> Adding functionality via recursion</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec32" style="font-size: 80%;"> Basic principles of recursion</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec33" style="font-size: 80%;"> Explaining recursion</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#sketcher:scaling" style="font-size: 80%;"> Scaling, translating, and rotating a figure</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec35" style="font-size: 80%;"> Scaling</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec36" style="font-size: 80%;"> Translation</a></li>
- <!-- navigation toc: --> <li><a href="._pysketcher005.html#___sec37" style="font-size: 80%;"> Rotation</a></li>
- </ul>
- </li>
- </ul>
- </div>
- </div>
- </div> <!-- end of navigation bar -->
- <div class="container">
- <p> </p><p> </p><p> </p> <!-- add vertical space -->
- <a name="part0003"></a>
- <!-- !split -->
- <h1 id="sketcher:ex:pendulum">A simple pendulum</h1>
- <h2 id="sketcher:ex:pendulum:basic">The basic physics sketch</h2>
- <p>
- We now want to make a sketch of simple pendulum from physics, as shown
- in Figure <a href="#sketcher:ex:pendulum:fig1">8</a>. A body with mass \( m \) is attached
- to a massless, stiff rod, which can rotate about a point, causing the
- pendulum to oscillate.
- <p>
- A suggested work flow is to
- first sketch the figure on a piece of paper and introduce a coordinate
- system. A simple coordinate system is indicated in Figure
- <a href="#sketcher:ex:pendulum:fig1wgrid">9</a>. In a code we introduce variables
- <code>W</code> and <code>H</code> for the width and height of the figure (i.e., extent of
- the coordinate system) and open the program like this:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span style="color: #008000; font-weight: bold">from</span> <span style="color: #0000FF; font-weight: bold">pysketcher</span> <span style="color: #008000; font-weight: bold">import</span> <span style="color: #666666">*</span>
- H <span style="color: #666666">=</span> <span style="color: #666666">7.</span>
- W <span style="color: #666666">=</span> <span style="color: #666666">6.</span>
- drawing_tool<span style="color: #666666">.</span>set_coordinate_system(xmin<span style="color: #666666">=0</span>, xmax<span style="color: #666666">=</span>W,
- ymin<span style="color: #666666">=0</span>, ymax<span style="color: #666666">=</span>H,
- axis<span style="color: #666666">=</span><span style="color: #008000">True</span>)
- drawing_tool<span style="color: #666666">.</span>set_grid(<span style="color: #008000">True</span>)
- drawing_tool<span style="color: #666666">.</span>set_linecolor(<span style="color: #BA2121">'blue'</span>)
- </pre></div>
- <p>
- Note that when the sketch is ready for "production", we will (normally)
- set <code>axis=False</code> to remove the coordinate system and also remove the
- grid, i.e., delete or
- comment out the line <code>drawing_tool.set_grid(True)</code>.
- Also note that we in this example let all lines be blue by default.
- <p>
- <center> <!-- figure -->
- <hr class="figure">
- <center><p class="caption">Figure 8: Sketch of a simple pendulum. <div id="sketcher:ex:pendulum:fig1"></div> </p></center>
- <p><img src="fig-tut/pendulum1.png" align="bottom" width=300></p>
- </center>
- <p>
- <center> <!-- figure -->
- <hr class="figure">
- <center><p class="caption">Figure 9: Sketch with assisting coordinate system. <div id="sketcher:ex:pendulum:fig1wgrid"></div> </p></center>
- <p><img src="fig-tut/pendulum1_wgrid.png" align="bottom" width=400></p>
- </center>
- <p>
- The next step is to introduce variables for key quantities in the sketch.
- Let <code>L</code> be the length of the pendulum, <code>P</code> the rotation point, and let
- <code>a</code> be the angle the pendulum makes with the vertical (measured in degrees).
- We may set
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">L <span style="color: #666666">=</span> <span style="color: #666666">5*</span>H<span style="color: #666666">/7</span> <span style="color: #408080; font-style: italic"># length</span>
- P <span style="color: #666666">=</span> (W<span style="color: #666666">/6</span>, <span style="color: #666666">0.85*</span>H) <span style="color: #408080; font-style: italic"># rotation point</span>
- a <span style="color: #666666">=</span> <span style="color: #666666">40</span> <span style="color: #408080; font-style: italic"># angle</span>
- </pre></div>
- <p>
- Be careful with integer division if you use Python 2! Fortunately, we
- started out with <code>float</code> objects for <code>W</code> and <code>H</code> so the expressions above
- are safe.
- <p>
- What kind of objects do we need in this sketch? Looking at
- Figure <a href="#sketcher:ex:pendulum:fig1">8</a> we see that we need
- <ol>
- <li> a vertical, dashed line</li>
- <li> an arc with no text but dashed line to indicate the <em>path</em> of the
- mass</li>
- <li> an arc with name \( \theta \) to indicate the <em>angle</em></li>
- <li> a line, here called <em>rod</em>, from the rotation point to the mass</li>
- <li> a blue, filled circle representing the <em>mass</em></li>
- <li> a text \( m \) associated with the mass</li>
- <li> an indicator of the pendulum's <em>length</em> \( L \), visualized as
- a line with two arrows tips and the text \( L \)</li>
- <li> a gravity vector with the text \( g \)</li>
- </ol>
- Pysketcher has objects for each of these elements in our sketch.
- We start with the simplest element: the vertical line, going from
- <code>P</code> to <code>P</code> minus the length \( L \) in \( y \) direction:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">vertical <span style="color: #666666">=</span> Line(P, P<span style="color: #666666">-</span>point(<span style="color: #666666">0</span>,L))
- </pre></div>
- <p>
- The class <code>point</code> is very convenient: it turns its two coordinates into
- a vector with which we can compute, and is therefore one of the most
- widely used Pysketcher objects.
- <p>
- The path of the mass is an arc that can be made by
- Pysketcher's <code>Arc</code> object:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">path <span style="color: #666666">=</span> Arc(P, L, <span style="color: #666666">-90</span>, a)
- </pre></div>
- <p>
- The first argument <code>P</code> is the center point, the second is the
- radius (<code>L</code> here), the next argument is the start angle, here
- it starts at -90 degrees, while the next argument is the angle of
- the arc, here <code>a</code>.
- For the path of the mass, we also need an arc object, but this
- time with an associated text. Pysketcher has a specialized object
- for this purpose, <code>Arc_wText</code>, since placing the text manually can
- be somewhat cumbersome.
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">angle <span style="color: #666666">=</span> Arc_wText(<span style="color: #BA2121">r'$\theta$'</span>, P, L<span style="color: #666666">/4</span>, <span style="color: #666666">-90</span>, a, text_spacing<span style="color: #666666">=1/30.</span>)
- </pre></div>
- <p>
- The arguments are as for <code>Arc</code> above, but the first one is the desired
- text. Remember to use a raw string since we want a LaTeX greek letter
- that contains a backslash.
- The <code>text_spacing</code> argument must often be tweaked. It is recommended
- to create only a few objects before rendering the sketch and then
- adjust spacings as one goes along.
- <p>
- The rod is simply a line from <code>P</code> to the mass. We can easily
- compute the position of the mass from basic geometry considerations,
- but it is easier and safer to look up this point in other objects
- if it is already computed. In the present case,
- the <code>path</code> object stored its start and
- end points, so <code>path.geometric_features()['end']</code> is the end point
- of the path, which is the position of the mass. We can therefore
- create the rod simply as a line from <code>P</code> to this already computed end point:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">mass_pt <span style="color: #666666">=</span> path<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'end'</span>]
- rod <span style="color: #666666">=</span> Line(P, mass_pt)
- </pre></div>
- <p>
- The mass is a circle filled with color:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">mass <span style="color: #666666">=</span> Circle(center<span style="color: #666666">=</span>mass_pt, radius<span style="color: #666666">=</span>L<span style="color: #666666">/20.</span>)
- mass<span style="color: #666666">.</span>set_filled_curves(color<span style="color: #666666">=</span><span style="color: #BA2121">'blue'</span>)
- </pre></div>
- <p>
- To place the \( m \) correctly, we go a small distance in the direction of
- the rod, from the center of the circle. To this end, we need to
- compute the direction. This is easiest done by computing a vector
- from <code>P</code> to the center of the circle and calling <code>unit_vec</code> to make
- a unit vector in this direction:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">rod_vec <span style="color: #666666">=</span> rod<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'end'</span>] <span style="color: #666666">-</span> \
- rod<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'start'</span>]
- unit_rod_vec <span style="color: #666666">=</span> unit_vec(rod_vec)
- mass_symbol <span style="color: #666666">=</span> Text(<span style="color: #BA2121">'$m$'</span>, mass_pt <span style="color: #666666">+</span> L<span style="color: #666666">/10*</span>unit_rod_vec)
- </pre></div>
- <p>
- Again, the distance <code>L/10</code> is something one has to experiment with.
- <p>
- The next object is the length measure with the text \( L \). Such length
- measures are represented by Pysketcher's <code>Distance_wText</code> object.
- An easy construction is to first place this length measure along the
- rod and then translate it a little distance (<code>L/15</code>) in the
- normal direction of the rod:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">length <span style="color: #666666">=</span> Distance_wText(P, mass_pt, <span style="color: #BA2121">'$L$'</span>)
- length<span style="color: #666666">.</span>translate(L<span style="color: #666666">/15*</span>point(cos(radians(a)), sin(radians(a))))
- </pre></div>
- <p>
- For this translation we need a unit vector in the normal direction
- of the rod, which is from geometric considerations given by
- \( (\cos a, \sin a) \), when \( a \) is the angle of the pendulum.
- Alternatively, we could have found the normal vector as a vector that
- is normal to <code>unit_rod_vec</code>: <code>point(-unit_rod_vec[1],unit_rod_vec[0])</code>.
- <p>
- The final object is the gravity force vector, which is so common
- in physics sketches that Pysketcher has a ready-made object: <code>Gravity</code>,
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">gravity <span style="color: #666666">=</span> Gravity(start<span style="color: #666666">=</span>P<span style="color: #666666">+</span>point(<span style="color: #666666">0.8*</span>L,<span style="color: #666666">0</span>), length<span style="color: #666666">=</span>L<span style="color: #666666">/3</span>)
- </pre></div>
- <p>
- Since blue is the default color for
- lines, we want the dashed lines (for <code>vertical</code> and <code>path</code>) to be black
- and with linewidth 1. These properties can be set one by one for each
- object, but we can also make a little helper function:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span style="color: #008000; font-weight: bold">def</span> <span style="color: #0000FF">set_dashed_thin_blackline</span>(<span style="color: #666666">*</span>objects):
- <span style="color: #BA2121; font-style: italic">"""Set linestyle of objects to dashed, black, width=1."""</span>
- <span style="color: #008000; font-weight: bold">for</span> obj <span style="color: #AA22FF; font-weight: bold">in</span> objects:
- obj<span style="color: #666666">.</span>set_linestyle(<span style="color: #BA2121">'dashed'</span>)
- obj<span style="color: #666666">.</span>set_linecolor(<span style="color: #BA2121">'black'</span>)
- obj<span style="color: #666666">.</span>set_linewidth(<span style="color: #666666">1</span>)
- set_dashed_thin_blackline(vertical, path)
- </pre></div>
- <p>
- Now, all objects are in place, so it remains to compose the final
- figure and draw the composition:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">fig <span style="color: #666666">=</span> Composition(
- {<span style="color: #BA2121">'body'</span>: mass, <span style="color: #BA2121">'rod'</span>: rod,
- <span style="color: #BA2121">'vertical'</span>: vertical, <span style="color: #BA2121">'theta'</span>: angle, <span style="color: #BA2121">'path'</span>: path,
- <span style="color: #BA2121">'g'</span>: gravity, <span style="color: #BA2121">'L'</span>: length, <span style="color: #BA2121">'m'</span>: mass_symbol})
- fig<span style="color: #666666">.</span>draw()
- drawing_tool<span style="color: #666666">.</span>display()
- drawing_tool<span style="color: #666666">.</span>savefig(<span style="color: #BA2121">'pendulum1'</span>)
- </pre></div>
- <h2 id="___sec10">The body diagram </h2>
- <p>
- Now we want to isolate the mass and draw all the forces that act on it.
- Figure <a href="#sketcher:ex:pendulum:fig2wgrid">10</a> shows the desired result, but
- embedded in the coordinate system.
- We consider three types of forces: the gravity force, the force from the
- rod, and air resistance. The body diagram is key for deriving the
- equation of motion, so it is illustrative to add useful mathematical
- quantities needed in the derivation, such as the unit vectors in polar
- coordinates.
- <p>
- <center> <!-- figure -->
- <hr class="figure">
- <center><p class="caption">Figure 10: Body diagram of a simple pendulum. <div id="sketcher:ex:pendulum:fig2wgrid"></div> </p></center>
- <p><img src="fig-tut/pendulum5_wgrid.png" align="bottom" width=300></p>
- </center>
- <p>
- We start by listing the objects in the sketch:
- <ol>
- <li> a text \( (x_0,y_0) \) representing the rotation point <code>P</code></li>
- <li> unit vector \( \boldsymbol{i}_r \) with text</li>
- <li> unit vector \( \boldsymbol{i}_\theta \) with text</li>
- <li> a dashed vertical line</li>
- <li> a dashed line along the rod</li>
- <li> an arc with text \( \theta \)</li>
- <li> the gravity force with text \( mg \)</li>
- <li> the force in the rod with text \( S \)</li>
- <li> the air resistance force with text \( \sim |v|v \)</li>
- </ol>
- The first object, \( (x_0,y_0) \), is simply a plain text where we have
- to experiment with its position. The unit vectors in polar coordinates
- may be drawn using the Pysketcher's <code>Force</code> object since it has an
- arrow with a text. The first three objects can then be made as follows:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">x0y0 <span style="color: #666666">=</span> Text(<span style="color: #BA2121">'$(x_0,y_0)$'</span>, P <span style="color: #666666">+</span> point(<span style="color: #666666">-0.4</span>,<span style="color: #666666">-0.1</span>))
- ir <span style="color: #666666">=</span> Force(P, P <span style="color: #666666">+</span> L<span style="color: #666666">/10*</span>unit_vec(rod_vec),
- <span style="color: #BA2121">r'$\boldsymbol{i}_r$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.015</span>,<span style="color: #666666">0</span>))
- ith <span style="color: #666666">=</span> Force(P, P <span style="color: #666666">+</span> L<span style="color: #666666">/10*</span>unit_vec((<span style="color: #666666">-</span>rod_vec[<span style="color: #666666">1</span>], rod_vec[<span style="color: #666666">0</span>])),
- <span style="color: #BA2121">r'$\boldsymbol{i}_{\theta}$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.02</span>,<span style="color: #666666">0.005</span>))
- </pre></div>
- <p>
- Note that tweaking of the position of <code>x0y0</code> use absolute coordinates, so
- if <code>W</code> or <code>H</code> is changed in the beginning of the figure, the tweaked position
- will most likely not look good. A better solution would be to express
- the tweaked displacement <code>point(-0.4,-0.1)</code> in terms of <code>W</code> and <code>H</code>.
- The <code>text_spacing</code> values in the <code>Force</code> objects also use absolute
- coordinates. Very often, this is much more convenient when adjusting
- the objects, and global size parameters like <code>W</code> and <code>H</code> are in practice
- seldom changed, so the solution above is quite typical.
- <p>
- The vertical, dashed line, the dashed rod, and the arc for \( \theta \)
- are made by
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">rod_start <span style="color: #666666">=</span> rod<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'start'</span>] <span style="color: #408080; font-style: italic"># Point P</span>
- vertical2 <span style="color: #666666">=</span> Line(rod_start, rod_start <span style="color: #666666">+</span> point(<span style="color: #666666">0</span>,<span style="color: #666666">-</span>L<span style="color: #666666">/3</span>))
- set_dashed_thin_blackline(vertical2)
- set_dashed_thin_blackline(rod)
- angle2 <span style="color: #666666">=</span> Arc_wText(<span style="color: #BA2121">r'$\theta$'</span>, rod_start, L<span style="color: #666666">/6</span>, <span style="color: #666666">-90</span>, a,
- text_spacing<span style="color: #666666">=1/30.</span>)
- </pre></div>
- <p>
- Note how we reuse the earlier defined object <code>rod</code>.
- <p>
- The forces are constructed as shown below.
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">mg_force <span style="color: #666666">=</span> Force(mass_pt, mass_pt <span style="color: #666666">+</span> L<span style="color: #666666">/5*</span>point(<span style="color: #666666">0</span>,<span style="color: #666666">-1</span>),
- <span style="color: #BA2121">'$mg$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>)
- rod_force <span style="color: #666666">=</span> Force(mass_pt, mass_pt <span style="color: #666666">-</span> L<span style="color: #666666">/3*</span>unit_vec(rod_vec),
- <span style="color: #BA2121">'$S$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.03</span>, <span style="color: #666666">0.01</span>))
- air_force <span style="color: #666666">=</span> Force(mass_pt, mass_pt <span style="color: #666666">-</span>
- L<span style="color: #666666">/6*</span>unit_vec((rod_vec[<span style="color: #666666">1</span>], <span style="color: #666666">-</span>rod_vec[<span style="color: #666666">0</span>])),
- <span style="color: #BA2121">'$\sim|v|v$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.04</span>,<span style="color: #666666">0.005</span>))
- </pre></div>
- <p>
- Note that the drag force from the air is directed perpendicular to
- the rod, so we construct a unit vector in this direction directly from
- the <code>rod_vec</code> vector.
- <p>
- All objects are in place, and we can compose a figure to be drawn:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%">body_diagram <span style="color: #666666">=</span> Composition(
- {<span style="color: #BA2121">'mg'</span>: mg_force, <span style="color: #BA2121">'S'</span>: rod_force, <span style="color: #BA2121">'rod'</span>: rod,
- <span style="color: #BA2121">'vertical'</span>: vertical2, <span style="color: #BA2121">'theta'</span>: angle2,
- <span style="color: #BA2121">'body'</span>: mass, <span style="color: #BA2121">'m'</span>: mass_symbol})
- body_diagram[<span style="color: #BA2121">'air'</span>] <span style="color: #666666">=</span> air_force
- body_diagram[<span style="color: #BA2121">'ir'</span>] <span style="color: #666666">=</span> ir
- body_diagram[<span style="color: #BA2121">'ith'</span>] <span style="color: #666666">=</span> ith
- body_diagram[<span style="color: #BA2121">'origin'</span>] <span style="color: #666666">=</span> x0y0
- </pre></div>
- <p>
- Here, we exemplify that we can start out with a composition as a
- dictionary, but (as in ordinary Python dictionaries) add new
- elements later when desired.
- <p>
- <!-- FIGURE: [fig-tut/pendulum1.png, width=300 frac=0.5] Sketch of a simple pendulum. <div id="sketcher:ex:pendulum:fig2"></div> -->
- <h2 id="sketcher:ex:pendulum:anim">Animated body diagram</h2>
- <p>
- We want to make an animated body diagram so that we can see how forces
- develop in time according to the motion. This means that we must
- couple the sketch at each time level to a numerical solution for
- the motion of the pendulum.
- <h3 id="___sec12">Function for drawing the body diagram </h3>
- <p>
- The previous flat program for making sketches of the pendulum is not
- suitable when we want to make a sketch at a lot of different points
- in time, i.e., for a lot of different angles that the pendulum makes
- with the vertical. We therefore need to draw the body diagram in
- a function where the angle is a parameter. We also supply arrays
- containing the (numerically computed) values of the angle \( \theta \) and
- the forces at various time levels, plus the desired time point and level
- for this particular sketch:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span style="color: #008000; font-weight: bold">from</span> <span style="color: #0000FF; font-weight: bold">pysketcher</span> <span style="color: #008000; font-weight: bold">import</span> <span style="color: #666666">*</span>
- H <span style="color: #666666">=</span> <span style="color: #666666">15.</span>
- W <span style="color: #666666">=</span> <span style="color: #666666">17.</span>
- drawing_tool<span style="color: #666666">.</span>set_coordinate_system(xmin<span style="color: #666666">=0</span>, xmax<span style="color: #666666">=</span>W,
- ymin<span style="color: #666666">=0</span>, ymax<span style="color: #666666">=</span>H,
- axis<span style="color: #666666">=</span><span style="color: #008000">False</span>)
- <span style="color: #008000; font-weight: bold">def</span> <span style="color: #0000FF">pendulum</span>(theta, S, mg, drag, t, time_level):
- drawing_tool<span style="color: #666666">.</span>set_linecolor(<span style="color: #BA2121">'blue'</span>)
- <span style="color: #008000; font-weight: bold">import</span> <span style="color: #0000FF; font-weight: bold">math</span>
- a <span style="color: #666666">=</span> math<span style="color: #666666">.</span>degrees(theta[time_level])
- L <span style="color: #666666">=</span> <span style="color: #666666">0.4*</span>H <span style="color: #408080; font-style: italic"># length</span>
- P <span style="color: #666666">=</span> (W<span style="color: #666666">/2</span>, <span style="color: #666666">0.8*</span>H) <span style="color: #408080; font-style: italic"># rotation point</span>
- vertical <span style="color: #666666">=</span> Line(P, P<span style="color: #666666">-</span>point(<span style="color: #666666">0</span>,L))
- path <span style="color: #666666">=</span> Arc(P, L, <span style="color: #666666">-90</span>, a)
- angle <span style="color: #666666">=</span> Arc_wText(<span style="color: #BA2121">r'$\theta$'</span>, P, L<span style="color: #666666">/4</span>, <span style="color: #666666">-90</span>, a, text_spacing<span style="color: #666666">=1/30.</span>)
- mass_pt <span style="color: #666666">=</span> path<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'end'</span>]
- rod <span style="color: #666666">=</span> Line(P, mass_pt)
- mass <span style="color: #666666">=</span> Circle(center<span style="color: #666666">=</span>mass_pt, radius<span style="color: #666666">=</span>L<span style="color: #666666">/20.</span>)
- mass<span style="color: #666666">.</span>set_filled_curves(color<span style="color: #666666">=</span><span style="color: #BA2121">'blue'</span>)
- rod_vec <span style="color: #666666">=</span> rod<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'end'</span>] <span style="color: #666666">-</span> \
- rod<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'start'</span>]
- unit_rod_vec <span style="color: #666666">=</span> unit_vec(rod_vec)
- mass_symbol <span style="color: #666666">=</span> Text(<span style="color: #BA2121">'$m$'</span>, mass_pt <span style="color: #666666">+</span> L<span style="color: #666666">/10*</span>unit_rod_vec)
- length <span style="color: #666666">=</span> Distance_wText(P, mass_pt, <span style="color: #BA2121">'$L$'</span>)
- <span style="color: #408080; font-style: italic"># Displace length indication</span>
- length<span style="color: #666666">.</span>translate(L<span style="color: #666666">/15*</span>point(cos(radians(a)), sin(radians(a))))
- gravity <span style="color: #666666">=</span> Gravity(start<span style="color: #666666">=</span>P<span style="color: #666666">+</span>point(<span style="color: #666666">0.8*</span>L,<span style="color: #666666">0</span>), length<span style="color: #666666">=</span>L<span style="color: #666666">/3</span>)
- <span style="color: #008000; font-weight: bold">def</span> <span style="color: #0000FF">set_dashed_thin_blackline</span>(<span style="color: #666666">*</span>objects):
- <span style="color: #BA2121; font-style: italic">"""Set linestyle of objects to dashed, black, width=1."""</span>
- <span style="color: #008000; font-weight: bold">for</span> obj <span style="color: #AA22FF; font-weight: bold">in</span> objects:
- obj<span style="color: #666666">.</span>set_linestyle(<span style="color: #BA2121">'dashed'</span>)
- obj<span style="color: #666666">.</span>set_linecolor(<span style="color: #BA2121">'black'</span>)
- obj<span style="color: #666666">.</span>set_linewidth(<span style="color: #666666">1</span>)
- set_dashed_thin_blackline(vertical, path)
- fig <span style="color: #666666">=</span> Composition(
- {<span style="color: #BA2121">'body'</span>: mass, <span style="color: #BA2121">'rod'</span>: rod,
- <span style="color: #BA2121">'vertical'</span>: vertical, <span style="color: #BA2121">'theta'</span>: angle, <span style="color: #BA2121">'path'</span>: path,
- <span style="color: #BA2121">'g'</span>: gravity, <span style="color: #BA2121">'L'</span>: length})
- <span style="color: #408080; font-style: italic">#fig.draw()</span>
- <span style="color: #408080; font-style: italic">#drawing_tool.display()</span>
- <span style="color: #408080; font-style: italic">#drawing_tool.savefig('tmp_pendulum1')</span>
- drawing_tool<span style="color: #666666">.</span>set_linecolor(<span style="color: #BA2121">'black'</span>)
- rod_start <span style="color: #666666">=</span> rod<span style="color: #666666">.</span>geometric_features()[<span style="color: #BA2121">'start'</span>] <span style="color: #408080; font-style: italic"># Point P</span>
- vertical2 <span style="color: #666666">=</span> Line(rod_start, rod_start <span style="color: #666666">+</span> point(<span style="color: #666666">0</span>,<span style="color: #666666">-</span>L<span style="color: #666666">/3</span>))
- set_dashed_thin_blackline(vertical2)
- set_dashed_thin_blackline(rod)
- angle2 <span style="color: #666666">=</span> Arc_wText(<span style="color: #BA2121">r'$\theta$'</span>, rod_start, L<span style="color: #666666">/6</span>, <span style="color: #666666">-90</span>, a,
- text_spacing<span style="color: #666666">=1/30.</span>)
- magnitude <span style="color: #666666">=</span> <span style="color: #666666">1.2*</span>L<span style="color: #666666">/2</span> <span style="color: #408080; font-style: italic"># length of a unit force in figure</span>
- force <span style="color: #666666">=</span> mg[time_level] <span style="color: #408080; font-style: italic"># constant (scaled eq: about 1)</span>
- force <span style="color: #666666">*=</span> magnitude
- mg_force <span style="color: #666666">=</span> Force(mass_pt, mass_pt <span style="color: #666666">+</span> force<span style="color: #666666">*</span>point(<span style="color: #666666">0</span>,<span style="color: #666666">-1</span>),
- <span style="color: #BA2121">''</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>)
- force <span style="color: #666666">=</span> S[time_level]
- force <span style="color: #666666">*=</span> magnitude
- rod_force <span style="color: #666666">=</span> Force(mass_pt, mass_pt <span style="color: #666666">-</span> force<span style="color: #666666">*</span>unit_vec(rod_vec),
- <span style="color: #BA2121">''</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.03</span>, <span style="color: #666666">0.01</span>))
- force <span style="color: #666666">=</span> drag[time_level]
- force <span style="color: #666666">*=</span> magnitude
- <span style="color: #408080; font-style: italic">#print('drag(%g)=%g' % (t, drag[time_level]))</span>
- air_force <span style="color: #666666">=</span> Force(mass_pt, mass_pt <span style="color: #666666">-</span>
- force<span style="color: #666666">*</span>unit_vec((rod_vec[<span style="color: #666666">1</span>], <span style="color: #666666">-</span>rod_vec[<span style="color: #666666">0</span>])),
- <span style="color: #BA2121">''</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.04</span>,<span style="color: #666666">0.005</span>))
- body_diagram <span style="color: #666666">=</span> Composition(
- {<span style="color: #BA2121">'mg'</span>: mg_force, <span style="color: #BA2121">'S'</span>: rod_force, <span style="color: #BA2121">'air'</span>: air_force,
- <span style="color: #BA2121">'rod'</span>: rod,
- <span style="color: #BA2121">'vertical'</span>: vertical2, <span style="color: #BA2121">'theta'</span>: angle2,
- <span style="color: #BA2121">'body'</span>: mass})
- x0y0 <span style="color: #666666">=</span> Text(<span style="color: #BA2121">'$(x_0,y_0)$'</span>, P <span style="color: #666666">+</span> point(<span style="color: #666666">-0.4</span>,<span style="color: #666666">-0.1</span>))
- ir <span style="color: #666666">=</span> Force(P, P <span style="color: #666666">+</span> L<span style="color: #666666">/10*</span>unit_vec(rod_vec),
- <span style="color: #BA2121">r'$\boldsymbol{i}_r$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.015</span>,<span style="color: #666666">0</span>))
- ith <span style="color: #666666">=</span> Force(P, P <span style="color: #666666">+</span> L<span style="color: #666666">/10*</span>unit_vec((<span style="color: #666666">-</span>rod_vec[<span style="color: #666666">1</span>], rod_vec[<span style="color: #666666">0</span>])),
- <span style="color: #BA2121">r'$\boldsymbol{i}_{\theta}$'</span>, text_pos<span style="color: #666666">=</span><span style="color: #BA2121">'end'</span>,
- text_spacing<span style="color: #666666">=</span>(<span style="color: #666666">0.02</span>,<span style="color: #666666">0.005</span>))
- <span style="color: #408080; font-style: italic">#body_diagram['ir'] = ir</span>
- <span style="color: #408080; font-style: italic">#body_diagram['ith'] = ith</span>
- <span style="color: #408080; font-style: italic">#body_diagram['origin'] = x0y0</span>
- drawing_tool<span style="color: #666666">.</span>erase()
- body_diagram<span style="color: #666666">.</span>draw(verbose<span style="color: #666666">=0</span>)
- <span style="color: #408080; font-style: italic">#drawing_tool.display('Body diagram')</span>
- drawing_tool<span style="color: #666666">.</span>savefig(<span style="color: #BA2121">'tmp_</span><span style="color: #BB6688; font-weight: bold">%04d</span><span style="color: #BA2121">.png'</span> <span style="color: #666666">%</span> time_level, crop<span style="color: #666666">=</span><span style="color: #008000">False</span>)
- <span style="color: #408080; font-style: italic"># No cropping: otherwise movies will be very strange</span>
- </pre></div>
- <h3 id="___sec13">Equations for the motion and forces </h3>
- <p>
- The modeling of the motion of a pendulum is most conveniently done in
- polar coordinates since then the unknown force in the rod is separated
- from the equation determining the motion \( \theta(t) \).
- The position vector for the mass is
- $$ \rpos = x_0\ii + y_0\jj + L\ir\tp$$
- The corresponding acceleration becomes
- $$ \ddot{\rpos} = L\ddot{\theta}{\ith} - L\dot{\theta^2}{\ir}\tp$$
- <!-- Note: the extra braces help to render the equation correctly in sphinx! -->
- <p>
- There are three forces on the mass: the gravity force
- \( mg\jj = mg(-\cos\theta\,\ir + \sin\theta\,\ith) \), the force in the rod
- \( -S\ir \), and the drag force because of air resistance:
- $$ -\half C_D \varrho \pi R^2 |v|v\,\ith,$$
- where \( C_D\approx 0.4 \) is the drag coefficient for a sphere, \( \varrho \)
- is the density of air, \( R \) is the radius of the mass, and \( v \) is the
- velocity (\( v=L\dot\theta \)). The drag force acts in \( -\ith \) direction
- when \( v>0 \).
- <p>
- Newton's second law of motion for the pendulum now becomes
- $$ mL\ddot\theta\ith - mL\dot\theta^2\ir = -mg(-\cos\theta\,\ir +
- \sin\theta\,\ith)
- -S\ir - \half C_D \varrho \pi R^2 L^2|\dot\theta|\dot\theta\ith,$$
- which gives two component equations
- $$
- \begin{align}
- mL\ddot\theta + \half C_D \varrho \pi R^2 L^2|\dot\theta|\dot\theta +
- mg\sin\theta &= 0,
- \tag{1}\\
- S &= mL\dot\theta^2 + mg\cos\theta
- \tag{2}\tp
- \end{align}
- $$
- <p>
- It is almost always convenient to scale such equations. Introducing
- the dimensionless time
- $$ \bar t = \frac{t}{t_c},\quad t_c = \sqrt{\frac{L}{g}},$$
- leads to
- $$
- \begin{align}
- \frac{d^2\theta}{d\bar t^2} +
- \alpha\left\vert\frac{d\theta}{d\bar t}\right\vert\frac{d\theta}{d\bar t} +
- \sin\theta &= 0,
- \tag{3}\\
- \bar S &= \left(\frac{d\theta}{d\bar t}\right)^2
- + \cos\theta,
- \tag{4}
- \end{align}
- $$
- where \( \alpha \) is a dimensionless drag coefficient
- $$ \alpha = \frac{C_D\varrho\pi R^2L}{2m},$$
- and \( \bar S \) is the scaled force
- $$ \bar S = \frac{S}{mg}\tp$$
- We see that \( \bar S = 1 \) for the equilibrium position \( \theta=0 \), so this
- scaling of \( S \) seems appropriate.
- <p>
- The parameter \( \alpha \) is about
- the ratio of the drag force and the gravity force:
- $$ \frac{|\half C_D\varrho \pi R^2 |v|v|}{|mg|}\sim
- \frac{C_D\varrho \pi R^2 L^2 t_c^{-2}}{mg}
- \left|\frac{d\bar\theta}{d\bar t}\right|\frac{d\bar\theta}{d\bar t}
- \sim \frac{C_D\varrho \pi R^2 L}{2m}\theta_0^2 = \alpha \theta_0^2\tp$$
- (We have that \( \theta(t)/d\theta_0 \) is in \( [-1,1] \), so we expect
- since \( \theta_0^{-1}d\bar\theta/d\bar t \) to be around unity.)
- <p>
- The next step is to write a numerical solver for
- <a href="#mjx-eqn-3">(3)</a>-<a href="#mjx-eqn-4">(4)</a>. To
- this end, we use the <a href="https://github.com/hplgit/odespy" target="_self">Odespy</a>
- package. The system of second-order ODEs must be expressed as a system
- of first-order ODEs. We realize that the unknown \( \bar S \) is decoupled
- from \( \theta \) in the sense that we can first use
- <a href="#mjx-eqn-3">(3)</a> to solve for \( \theta \) and
- then compute \( \bar S \) from <a href="#mjx-eqn-4">(4)</a>.
- The first-order ODEs become
- $$
- \begin{align}
- \frac{d\omega}{d\bar t} &= -\alpha\left\vert\omega\right\vert\omega
- - \sin\theta,
- \tag{5}\\
- \frac{d\theta}{d\bar t} &= \omega\tp
- \tag{6}
- \end{align}
- $$
- Then we compute
- $$
- \begin{equation}
- \bar S = \omega^2 + \cos\theta\tp
- \tag{7}
- \end{equation}
- $$
- The dimensionless air resistance force can also be computed:
- $$
- \begin{equation}
- -\alpha|\omega|\omega\tp
- \tag{8}
- \end{equation}
- $$
- Since we scaled the force \( S \) by \( mg \), \( mg \) is the natural force scale,
- and the \( mg \) force itself is then unity.
- <p>
- By updating \( \omega \) in the first equation, we can use an Euler-Cromer
- scheme on Odespy (all other schemes are independent of whether the
- \( \theta \) or \( \omega \) equation comes first).
- <h3 id="___sec14">Numerical solution </h3>
- <p>
- An appropriate solver is
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span style="color: #008000; font-weight: bold">def</span> <span style="color: #0000FF">simulate_pendulum</span>(alpha, theta0, dt, T):
- <span style="color: #008000; font-weight: bold">import</span> <span style="color: #0000FF; font-weight: bold">odespy</span>
- <span style="color: #008000; font-weight: bold">def</span> <span style="color: #0000FF">f</span>(u, t, alpha):
- omega, theta <span style="color: #666666">=</span> u
- <span style="color: #008000; font-weight: bold">return</span> [<span style="color: #666666">-</span>alpha<span style="color: #666666">*</span>omega<span style="color: #666666">*</span><span style="color: #008000">abs</span>(omega) <span style="color: #666666">-</span> sin(theta),
- omega]
- <span style="color: #008000; font-weight: bold">import</span> <span style="color: #0000FF; font-weight: bold">numpy</span> <span style="color: #008000; font-weight: bold">as</span> <span style="color: #0000FF; font-weight: bold">np</span>
- Nt <span style="color: #666666">=</span> <span style="color: #008000">int</span>(<span style="color: #008000">round</span>(T<span style="color: #666666">/</span><span style="color: #008000">float</span>(dt)))
- t <span style="color: #666666">=</span> np<span style="color: #666666">.</span>linspace(<span style="color: #666666">0</span>, Nt<span style="color: #666666">*</span>dt, Nt<span style="color: #666666">+1</span>)
- solver <span style="color: #666666">=</span> odespy<span style="color: #666666">.</span>RK4(f, f_args<span style="color: #666666">=</span>[alpha])
- solver<span style="color: #666666">.</span>set_initial_condition([<span style="color: #666666">0</span>, theta0])
- u, t <span style="color: #666666">=</span> solver<span style="color: #666666">.</span>solve(t,
- terminate<span style="color: #666666">=</span><span style="color: #008000; font-weight: bold">lambda</span> u, t, n: <span style="color: #008000">abs</span>(u[n,<span style="color: #666666">1</span>]) <span style="color: #666666"><</span> <span style="color: #666666">1E-3</span>)
- omega <span style="color: #666666">=</span> u[:,<span style="color: #666666">0</span>]
- theta <span style="color: #666666">=</span> u[:,<span style="color: #666666">1</span>]
- S <span style="color: #666666">=</span> omega<span style="color: #666666">**2</span> <span style="color: #666666">+</span> np<span style="color: #666666">.</span>cos(theta)
- drag <span style="color: #666666">=</span> <span style="color: #666666">-</span>alpha<span style="color: #666666">*</span>np<span style="color: #666666">.</span>abs(omega)<span style="color: #666666">*</span>omega
- <span style="color: #008000; font-weight: bold">return</span> t, theta, omega, S, drag
- </pre></div>
- <h3 id="___sec15">Animation </h3>
- <p>
- We can finally traverse the time array and draw a body diagram
- at each time level. The resulting sketches are saved to files
- <code>tmp_%04d.png</code>, and these files can be combined to videos:
- <p>
- <!-- code=python (!bc pycod) typeset with pygments style "default" -->
- <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span style="color: #008000; font-weight: bold">def</span> <span style="color: #0000FF">animate</span>():
- <span style="color: #408080; font-style: italic"># Clean up old plot files</span>
- <span style="color: #008000; font-weight: bold">import</span> <span style="color: #0000FF; font-weight: bold">os</span><span style="color: #666666">,</span> <span style="color: #0000FF; font-weight: bold">glob</span>
- <span style="color: #008000; font-weight: bold">for</span> filename <span style="color: #AA22FF; font-weight: bold">in</span> glob<span style="color: #666666">.</span>glob(<span style="color: #BA2121">'tmp_*.png'</span>) <span style="color: #666666">+</span> glob<span style="color: #666666">.</span>glob(<span style="color: #BA2121">'movie.*'</span>):
- os<span style="color: #666666">.</span>remove(filename)
- <span style="color: #408080; font-style: italic"># Solve problem</span>
- <span style="color: #008000; font-weight: bold">from</span> <span style="color: #0000FF; font-weight: bold">math</span> <span style="color: #008000; font-weight: bold">import</span> pi, radians, degrees
- <span style="color: #008000; font-weight: bold">import</span> <span style="color: #0000FF; font-weight: bold">numpy</span> <span style="color: #008000; font-weight: bold">as</span> <span style="color: #0000FF; font-weight: bold">np</span>
- alpha <span style="color: #666666">=</span> <span style="color: #666666">0.4</span>
- period <span style="color: #666666">=</span> <span style="color: #666666">2*</span>pi
- T <span style="color: #666666">=</span> <span style="color: #666666">12*</span>period
- dt <span style="color: #666666">=</span> period<span style="color: #666666">/40</span>
- a <span style="color: #666666">=</span> <span style="color: #666666">70</span>
- theta0 <span style="color: #666666">=</span> radians(a)
- t, theta, omega, S, drag <span style="color: #666666">=</span> simulate_pendulum(alpha, theta0, dt, T)
- mg <span style="color: #666666">=</span> np<span style="color: #666666">.</span>ones(S<span style="color: #666666">.</span>size)
- <span style="color: #408080; font-style: italic"># Visualize drag force 5 times as large</span>
- drag <span style="color: #666666">*=</span> <span style="color: #666666">5</span>
- <span style="color: #008000; font-weight: bold">print</span>(<span style="color: #BA2121">'NOTE: drag force magnified 5 times!!'</span>)
- <span style="color: #408080; font-style: italic"># Draw animation</span>
- <span style="color: #008000; font-weight: bold">import</span> <span style="color: #0000FF; font-weight: bold">time</span>
- <span style="color: #008000; font-weight: bold">for</span> time_level, t_ <span style="color: #AA22FF; font-weight: bold">in</span> <span style="color: #008000">enumerate</span>(t):
- pendulum(theta, S, mg, drag, t_, time_level)
- time<span style="color: #666666">.</span>sleep(<span style="color: #666666">0.2</span>)
- <span style="color: #408080; font-style: italic"># Make videos</span>
- prog <span style="color: #666666">=</span> <span style="color: #BA2121">'ffmpeg'</span>
- filename <span style="color: #666666">=</span> <span style="color: #BA2121">'tmp_</span><span style="color: #BB6688; font-weight: bold">%04d</span><span style="color: #BA2121">.png'</span>
- fps <span style="color: #666666">=</span> <span style="color: #666666">6</span>
- codecs <span style="color: #666666">=</span> {<span style="color: #BA2121">'flv'</span>: <span style="color: #BA2121">'flv'</span>, <span style="color: #BA2121">'mp4'</span>: <span style="color: #BA2121">'libx264'</span>,
- <span style="color: #BA2121">'webm'</span>: <span style="color: #BA2121">'libvpx'</span>, <span style="color: #BA2121">'ogg'</span>: <span style="color: #BA2121">'libtheora'</span>}
- <span style="color: #008000; font-weight: bold">for</span> ext <span style="color: #AA22FF; font-weight: bold">in</span> codecs:
- lib <span style="color: #666666">=</span> codecs[ext]
- cmd <span style="color: #666666">=</span> <span style="color: #BA2121">'</span><span style="color: #BB6688; font-weight: bold">%(prog)s</span><span style="color: #BA2121"> -i </span><span style="color: #BB6688; font-weight: bold">%(filename)s</span><span style="color: #BA2121"> -r </span><span style="color: #BB6688; font-weight: bold">%(fps)s</span><span style="color: #BA2121"> '</span> <span style="color: #666666">%</span> <span style="color: #008000">vars</span>()
- cmd <span style="color: #666666">+=</span> <span style="color: #BA2121">'-vcodec </span><span style="color: #BB6688; font-weight: bold">%(lib)s</span><span style="color: #BA2121"> movie.</span><span style="color: #BB6688; font-weight: bold">%(ext)s</span><span style="color: #BA2121">'</span> <span style="color: #666666">%</span> <span style="color: #008000">vars</span>()
- <span style="color: #008000; font-weight: bold">print</span>(cmd)
- os<span style="color: #666666">.</span>system(cmd)
- </pre></div>
- <p>
- <div>
- <video loop controls width='640' height='365' preload='none'>
- <source src='https://github.com/hplgit/pysketcher/raw/master/doc/pub/tutorial/mov-tut/pendulum/movie.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
- <source src='https://github.com/hplgit/pysketcher/raw/master/doc/pub/tutorial/mov-tut/pendulum/movie.webm' type='video/webm; codecs="vp8, vorbis"'>
- <source src='https://github.com/hplgit/pysketcher/raw/master/doc/pub/tutorial/mov-tut/pendulum/movie.ogg' type='video/ogg; codecs="theora, vorbis"'>
- </video>
- </div>
- <p><em>The drag force is magnified 5 times (compared to \( mg \) and \( S \)!</em></p>
- <!-- Issue warning if in a Safari browser -->
- <script language="javascript">
- if (!!(window.safari)) {
- document.write("<div style=\"width: 95%%; padding: 10px; border: 1px solid #100; border-radius: 4px;\"><p><font color=\"red\">The above movie will not play in Safari - use Chrome, Firefox, or Opera.</font></p></div>")}
- </script>
- <p>
- <p>
- <!-- navigation buttons at the bottom of the page -->
- <ul class="pagination">
- <li><a href="._pysketcher002.html">«</a></li>
- <li><a href="._pysketcher000.html">1</a></li>
- <li><a href="._pysketcher001.html">2</a></li>
- <li><a href="._pysketcher002.html">3</a></li>
- <li class="active"><a href="._pysketcher003.html">4</a></li>
- <li><a href="._pysketcher004.html">5</a></li>
- <li><a href="._pysketcher005.html">6</a></li>
- <li><a href="._pysketcher004.html">»</a></li>
- </ul>
- <!-- ------------------- end of main content --------------- -->
- </div> <!-- end container -->
- <!-- include javascript, jQuery *first* -->
- <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
- <script src="http://netdna.bootstrapcdn.com/bootstrap/3.0.0/js/bootstrap.min.js"></script>
- <!-- Bootstrap footer
- <footer>
- <a href="http://..."><img width="250" align=right src="http://..."></a>
- </footer>
- -->
- </body>
- </html>
-
|